Anti-Bacterial Effectiveness Of Cymodocea Rotundata Extract And Assay For Primary Bioactive Composition.

  • Muhammad Kholiqul Amiin Study Program of Marine Science, Faculty of Agriculture, Universitas Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Rajabasa, Bandar Lampung City, Lampung 35141, Indonesia.
  • Almira Fardani Lahay Study Program of Marine Science, Faculty of Agriculture, Universitas Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Rajabasa, Bandar Lampung City, Lampung 35141, Indonesia.

Abstract

Anti-bacterial is a compound that can be used to inhibit bacterial growth. The compounds that play a role in damaging the cell membrane are phenols, flavonoids, and alkaloids. The phytochemical compounds above have the potential as natural Anti-bacterial on pathogenic bacteria, for example against Escherichia coli. Escherichia coli is a pathogenic microbe in humans that can cause digestive disorders and disrupt the work system of the stomach organs. Seagrass C. rotundata has compounds that are antibacterial, such as alkaloids, flavonoids, phenols, steroids, and tannins. C. rotundata can be seen in Indonesian waters. However, it has not been widely used. This study aims to determine the difference in concentration of seagrass extract of C. rotundata against E. coli anti-bacterial activity. The research method used was experimental laboratories with different concentrations of seagrass extract (10%, 20%, 30%, and 40%). The results showed that the seagrass extract of C. rotundata was effective as an antibacterial with a middle category, which is the inhibition zone ranging from 5-10 mm. Based on the studies conducted, 72 hours incubation period at 40% concentration was the best concentration to prevent E. coli at the 8.5 mm inhibition zone. Furthermore, bioactive compounds produced by C. rotundata are flavonoid compounds by showing changes in the color of the solution to yellow-orange. In addition, also produces phenol bioactive compounds by showing a change in the color of the solution to greenish, and also produces tannin bioactive compounds by showing a change in the color of the solution to blackish green. The results showed that C. rotundata can be used as a recommendation for the development of Anti-bacterial drugs in the future.

Keywords: Seagrass, Bioactive components, Anti-bacterial

Downloads

Download data is not yet available.

References

Ambo-Rappe, R., & Moore, A. M. 2019. Sulawesi Seas, Indonesia. World Seas: An Environmental Evaluation (Second Edition), 559-581. https://doi.org/10.1016/B978-0-08-100853-9.00032-4
Bading Taika, B., Bouckandou, M., Souza, A., Bourobou Bourobou, H., MacKenzie, L., & Lione, L. 2018. An overview of anti-diabetic plants used in Gabon: Pharmacology and toxicology. Journal of Ethnopharmacology, 216, 203-228. https://doi.org/10.1016/j.jep.2017.12.036
Cho, C., Zhao, Y., & Yun, Y. 2019. QSAR modelling for predicting adsorption of neutral, cationic, and anionic pharmaceuticals and other neutral compounds to microalgae Chlorella vulgaris in aquatic environment. Water Research, 151, 288-295.https://doi.org/10.1016/j.watres.2018.12.033
Dilipan, E., & Arulbalachandran, D. 2022. Genetic diversity of seagrass Cymodocea species as an ecological indicator on the Palk Bay Coast, India. Ecological Genetics and Genomics, 23, 100119. https://doi.org/10.1016/j.egg.2022.100119
Dzoyem, J., Tchamgoue, J., Tchouankeu, J., Kouam, S., Choudhary, M., & Bakowsky, U. 2018. Antibacterial activity and cytotoxicity of flavonoids compounds isolated from Pseudarthria hookeri Wight & Arn. (Fabaceae). South African Journal of Botany, 114, 100-103. https://doi.org/10.1016/j.sajb.2017.11.001
Ghomari, O., Sounni, F., Massaoudi, Y., Ghanam, J., Drissi Kaitouni, L. B., Merzouki, M., & Benlemlih, M. 2019. Phenolic profile (HPLC-UV) of olive leaves according to extraction procedure and assessment of antibacterial activity. Biotechnology Reports, 23, e00347. https://doi.org/10.1016/j.btre.2019.e00347
Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., de Roo Puente, Y. J., Hoyos-Nogués, M., Gil, F. J., & Perez, R. A. 2021. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Materials, 6(12), 4470-4490. https://doi.org/10.1016/j.bioactmat.2021.04.033
Guedes, A. R., de Souza, A. R. C., Turola Barbi, R. C., Nottar Escobar, E. L., Zanoello, É. F., & Corazza, M. L. 2020. Extraction of Synadenium grantii Hook f. using conventional solvents and supercritical CO2 + ethanol. The Journal of Supercritical Fluids, 160, 104796. https://doi.org/10.1016/j.supflu.2020.104796
Hajdinjak, T., Wergner, A., Prammer, W., Rigler-Hohenwarter, K., & Pelzer, A. 2019. Rectal swab cultures prior to transrectal prostate biopsy: Among Gram-negative isolates, in 42% of samples non-E.coli species are present. European Urology Supplements, 18(1), e55. https://doi.org/10.1016/S1569-9056(19)30040-5
Kim, D. H., Mahomoodally, M. F., Sadeer, N. B., Seok, P. G., Zengin, G., Palaniveloo, K., Khalil, A. A., Rauf, A., & Rengasamy, K. R. 2021. Nutritional and bioactive potential of seagrasses: A review. South African Journal of Botany, 137, 216-227. https://doi.org/10.1016/j.sajb.2020.10.018
Li, A., He, Y., Zhang, S., & Shi, Y. 2022. Antibacterial activity and action mechanism of flavonoids against phytopathogenic bacteria. Pesticide Biochemistry and Physiology, 188, 105221. https://doi.org/10.1016/j.pestbp.2022.105221
Mariño, M., Breckwoldt, A., Teichberg, M., Kase, A., & Reuter, H. 2019. Livelihood aspects of seaweed farming in Rote Island, Indonesia. Marine Policy, 107, 103600. https://doi.org/10.1016/j.marpol.2019.103600
O’Connor, M. I., Griffiths, G., Sanders-Smith, R., Hessing-Lewis, M., Davis, K. M., Forbes, C., Olson, A. M., Prentice, C., & Parfrey, L. W. 2022. A reciprocal transplant experiment sheds new light on a classic marine seagrass-algal symbiosis and suggests influence of epiphytic symbiont on seagrass microbiota. Aquatic Botany, 179, 103511.https://doi.org/10.1016/j.aquabot.2022.103511
Otmani, A., Amessis-Ouchemoukh, N., Birinci, C., Yahiaoui, S., Kolayli, S., Rodríguez-Flores, M. S., Escuredo, O., Seijo, M. C., & Ouchemoukh, S. 2021. Phenolic compounds and antioxidant and antibacterial activities of Algerian honeys. Food Bioscience, 42, 101070. https://doi.org/10.1016/j.fbio.2021.101070
Poli, A., Varese, G. C., Garzoli, L., & Prigione, V. 2022. Seagrasses, seaweeds and plant debris: An extraordinary reservoir of fungal diversity in the Mediterranean Sea. Fungal Ecology, 60, 101156. https://doi.org/10.1016/j.funeco.2022.101156
Sepperer, T., Hernandez-Ramos, F., Labidi, J., Oostingh, G. J., Bogner, B., Petutschnigg, A., & Tondi, G. 2019. Purification of industrial tannin extract through simple solid-liquid extractions. Industrial Crops and Products, 139, 111502. https://doi.org/10.1016/j.indcrop.2019.111502
Sillero, L., Prado, R., Welton, T., & Labidi, J. 2021. Extraction of flavonoid compounds from bark using sustainable deep eutectic solvents. Sustainable Chemistry and Pharmacy, 24, 100544. https://doi.org/10.1016/j.scp.2021.100544
Stamogiannou, I., Van Camp, J., Smagghe, G., Van de Walle, D., Dewettinck, K., & Raes, K. 2021. Impact of phenolic compound as activators or inhibitors on the enzymatic hydrolysis of cellulose. International Journal of Biological Macromolecules, 186, 174-180. https://doi.org/10.1016/j.ijbiomac.2021.07.052
Tajik, S., Zarinkamar, F., Soltani, B. M., & Nazari, M. 2019. Induction of phenolic and flavonoid compounds in leaves of saffron (Crocus sativus L.) by salicylic acid. Scientia Horticulturae, 257, 108751.https://doi.org/10.1016/j.scienta.2019.108751
Tian, C., Chang, Y., Zhang, Z., Wang, H., Xiao, S., Cui, C., & Liu, M. 2019. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon, 5(8), e02234. https://doi.org/10.1016/j.heliyon.2019.e02234
Unsworth, R. K., Ambo-Rappe, R., Jones, B. L., La Nafie, Y. A., Irawan, A., Hernawan, U. E., Moore, A. M., & Cullen-Unsworth, L. C. 2018. Indonesia's globally significant seagrass meadows are under widespread threat. Science of The Total Environment, 634, 279-286. https://doi.org/10.1016/j.scitotenv.2018.03.315
Xu, C., Chen, T., Zhang, S., Zhou, C., Liao, W., Fang, R., Chen, L., & Zhou, T. 2022. In vitro activity of imipenem-relebactam alone and in combination with fosfomycin against carbapenem-resistant gram-negative pathogens. Diagnostic Microbiology and Infectious Disease, 103(3), 115712. https://doi.org/10.1016/j.diagmicrobio.2022.115712
Published
2023-04-08
Abstract viewed = 432 times
PDF downloaded = 352 times