

Jurnal Riset Fisika Indonesia

Volume 3, Nomor 2, Juni 2023

ISSN: 2776-1460 (print); 2797-6513; (online)

https://journal.ubb.ac.id/jrfi/article/view/3555

Pembuatan Minyak Kelapa Murni(Virgin Coconut Oil) dengan Metode Fermentasi dan Penjernihan Menggunakan Ekstrak Daun Lada dan Karbon Aktif

Heni pornawati*), Herman Aldila, Rena Aprilianti, Dera Selviani

Jurusan Fisika, Universitas Bangka Belitung Jl. Kampus Peradaban, Kampus Terpadu Balunijuk Gd. Dharma Penelitian Lt 1, Bangka 33172, Bangka Belitung, Indonesia

*E-mail korespondensi: hheni4061@gmail.com

Info Artikel:

Abstract

Dikirim:

20 November2022

Revisi:

23 Juni 2023 Diterima:

30 Juni 2023

Kata Kunci:

Coconut oil, Fermentation method, radicals, tempeh yeast Coconut oil is a valuable part of the coconut fruit and is widely used as an industrial raw material or part of it is made into cooking oil. Oil extraction from coconut meat can be done in several ways. Extraction of coconut oil that is being developed at this time is the fermentation method using several enzymes or microbes, one of which can be used is yeast tempeh. This research aims to analyze the yield content and quality criteria of coconut oil made using the fermentation method and to analyze the effect of adding pepper leaf extract and activated carbon on the shelf life and clarification of coconut oil. From the results of experiments carried out in mixing tempeh yeast, the free fatty acid test, yield test, aroma test and density test were carried out. As for the test results, the determination of free fatty acids in this cooking oil study used the titration method with NaOH until the color changed to pink. For the redemption test, the highest oil concentration was 3 grams, while the tempeh yeast 4 grams and 5 grams decreased. Aroma test where in week 9 coconut oil without treatment experienced rancidity. This was caused by auto-oxidation which began to form radicals due to the presence of fat peroxidation factors. The density test is close to the SNI standard value, namely the lowest density of 0.9600 g/cm3 obtained from closed treatment with 0.5 ml of extract. This is because in this treatment very little cooking oil is contaminated with other substances.

PENDAHULUAN

Peneliti Yayasan Lembaga Konsumen Indonesia (YLKI) mencatat bahwa mulai akhir tahun 2021 hingga Februari 2022 terjadi kenaikan harga minyak goreng kelapa sawit yang berdampak pada kelangkaan dan harga minyak goreng [1]. Hal ini disebabkan adanya kelebihan permintaan CPO di pasar duniaimencerminkan laju permintaan lebih besar dibandingkan dengan laju peningkatan produksi, sehingga memungkinkan harga CPO dunia terus meningkat [2]. Selain itu, perilaku penimbunan, upaya mengalihkan penjualan minyak goreng sawit dari pasar modern ke pasar tradisional, dan panic buying masyarakat menjadi faktor kelangkaan minyak nabati [3].

Sebagian besar masyarakat di Indonesia menggunakan minyak goreng untuk memasak yang berbahan dasar dari minyak sawit dalam kehidupan sehari-hari [4]. Dengan kebijakan pemerintah tentang produksi biodiesel CPO berbasis minyak sawit, hal ini akan mengancam stok

bahan baku minyak goreng kelapa sawit [5].Oleh karena itu, diperlukan bahan baku pengganti minyak nabati kelapa sawit. Bahan baku minyak nabati lainnya adalah minyak kelapa, minyak canola, minyak zaitun, minyak alpukat dan margarin. Dari bahan baku tersebut, minyak kelapa adalah yang paling familiar dan mudah ditemukan di sekitaran tempat tinggal. Komoditas kelapa di Bangka Belitung cukup besar, sekitar 5,1 juta ton pada tahun 2020. Namun minyak kelapa ini memiliki beberapa kekurangan yaitu proses pembuatan yang lama, konsumsi energi yang tinggi, dan mudah berbau tengik dari produk minyak kelapa. Manfaat minyak kelapa adalah untuk meningkatkan kadar kolesterol baik (HDL), mengelola stres, membantu mengurangi rasa lapar, meningkatkan fungsi kognitif, menjaga kesehatan kulit, mencegah penyakit liver, dan bermanfaat bagi kesehatan gigi [6]. Berbagai upaya untuk meningkatkan kualitas minyak kelapa antara lain menghilangkan bau tengik dan menjernihkan minyak kelapa.

Baru-baru ini ditemukan metode pembuatan minyak kelapa yang dapat mengurangi beberapa kelemahan tersebut diantaranya metode konvensional, fermentasi dan enzim. Dari metode tersebut metode fermentasi menjadi metode yang paling efektif dalam pembuatan minyak kelapa [7]. Metode yang menggunakan proses fermentasi agak berbeda dengan cara konvensional). Proses pembuatan minyak kelapa dengan cara fermentasi dilakukan tanpa pemanasan, yaitu dengan penambahan ragi tempe pada krim santan kemudian diinkubasi sampai terbentuk lapisan endapan dan minyak di permukaannya [7]. Ketengikan merupakan masalah sangat menentukan mutuiprodukipangan.iSalahisatuicara yang untukimengatasinyaiialah dengan menambahkan antioksidan. Telah diketahui bahwa antioksidan sintetik sangat efektifdalammenghambat reaksii oksidasii lemaki sehingga dapati mencegah terjadinya ketengikan minyak kelapa [8]. Bau yang kurang sedap (tengik) muncul dari hasil oksidasi minyak atau asam lemak yang terjadi selama proses pengolahan minyak [9]. Selain adanya kontak dengan oksidasi, bau tengikimuncul akibat adanya kontak dengan molekul air (hidrolisis) atau kontak dengan logam [8]. Selanjutnya dimanfaatkan tempurung kelapa untuk proses penjernihan minyak kelapa.

Pada penelitian ini, akan dilakukan penelitian pembuatan minyak kelapa menggunakan metode fermentasi ragi tempe dan optimalisasi peningkatan kualitas minyak menggunakan ekstrak daun lada sebagai antioksidan untuk mencegah bau tengik dan karbon aktif minyak kelapa sebagai penjernih minyak. Untuk variasi penelitian yang digunakan komposisi ragi volume santan untuk mengetahui kondisi optimum minyak yang dihasilkan. Selanjutnya komposisi optimum yang diperoleh akan dilanjutkan dengan variasi penambahan ekstrak daun lada dan karbon aktif tempurung kelapa untuk mengamati masa simpan dan kejernihan produk minyak yang dihasilkan. Sehingga diharapkan produk minyak kelapa dapat menjadi alternatif pengganti minyak kelapa sawit jika terjadi kelangkaan di pasaran.

METODE PENELITIAN

Bahan dan Alat

Bahan yang digunakan dalam penelitian ini yaitu kelapa, daun lada, etanol 96%, tempurung kelapa, larutan asam format (H3PO4) 3M, dan aquadest . Sedangkan alat yang digunakan seperti parutan, penyaringan, baskom, toples, gelas ukur, blender, mesin pengayakan, labu leher tiga, gelas beaker, magnetik stirer, hot plate, oven, furnace, indikator universal ph Meter, gelas kimia, centrifuge dan pompa vakum.

Prosedur Penelitian

Penelitian ini dilakukan beberapa tahap yaitu:

a. Preparasi Daging Buah Kelapa

Kelapa yang sudah tua dan segar di kupas lalu di tempatkan dalam satu wadah dan siap untuk di parut. Hasil parutan kelapa dicampurkan air dengan perbandingan 1:1 lalu diperas dan di saring. Santan yang didapatkan di masukkan ke dalam toples dan diamkan selama 1 jam sampai terbentuk 2 lapisan, bagian atas (kanil/krim) sedangkan bagian bawah (air). Setelah air terbuang, kanil (krim) dapat diambil untuk dilakukan fermentasi.

b. Fermentasi Kanil (krim) menjadi Minyak

Kanil (krim) yang sebanyak 1L dituangankan ke dalam gelas ukur lalu ditambahkan ragi tempe dengan perbandingan 1g, 3g dan 5g. Kemudian di kocok dan diamkan selama 24 jam dengan suhu 30° agar terjadi proses fermentasi. Setelah itu, minyak kelapa yang telah di peroleh di lakukan penyaringan. Kemudian dilakukan uji randomen.

c. Ekstrasi Daun Lada

Pada proses pembuatan ekstraksi, tahap pertama yaitu daun lada yang di peroleh,di timbang sebanyak 100g kemudian dikeringkan di bawah sinar matahari hingga kering. Setelah kering sempel di hancurkan menggunakan blender, setelah itu dilakukan pengayakan dengan menggunkan ayakan 50 Mesh sehingga di peroleh serbuk, kemudian di simpan dalam wadah tertutup.

Selanjutnya pembuatan ekstrasi daun lada di lakukan dengan cara serbuk daun lada dimasukan kedalam labu leher tiga. Kemudian daun lada dicampurkan dengan etanol 96% sebanyak 100ml kedalam beker gelas dan di aduk,lalu di masukan kedalam labu leher tiga. Magnetik Stirrer dimasukkan ke labu leher tiga dan diatur kecepatannya sebesar 100 rpm. Hot Plate dihidupkan dan diatur suhunya sebesar 60°C. Dibiarkan lama ekstraksi selama 30 menit. Hot Plate dimatikan dan hasil ekstrak dituangkan ke beaker glass. Ekstrak diambil dengan cara filtrasi, hasil ekstrak disaring dengan kertas saring dan residu dibuang. Hasil filtrasi yaitu filtrat dipekatkan dengan oven, pada suhu 40°C selama 1 jam sehingga diperoleh filtrat pekat. Selanjutnya minyak sebanyak 250 ml di campurkan ekstrak daun lada dengan perbandingan variasi 0.5% ml, 0.75%ml, 1% ml. Kemudian dilakukan uji ketengikan.

d. Pembuatan Arang Aktif

Adapun tahapan proses pembuatan arang aktif adalah sebagai berikut: Tempurung kelapa dibersihkan dari sisa-sisa serabut kelapa yang menempel. Tempurung kelapa dijemur dibawah sinar matahari sampai kering. Kemudian dikarbonisasi pada suhu 400°C selama 30 menit menggunakan furnace. Karbon yang terbentuk dihaluskan, lalu diayak hingga ukuran partikel 80 mesh. Setelah itu, karbon direndam dalam larutan H3PO4 dengan konsentrasi 8 % selama 24 jam. Kemudian, karbon dicuci dengan menggunakanaquades hingga filtrat netral dan disaring. Karbon aktif yang terbentuklalu dikeringkan dengan oven pada temperatur 110°C selama 1 jam.

e. Absorpsi Minyak Goreng

Minyak goreng sebanyak 250 ml dimasukkan ke dalam gelas kimia, kemudian tambahkan ekstrak daun lada dengan perbandingan variasi 0,5%,0.75% dan 1%. Dipanaskan di atas hot plate dengan suhu 120°C-130°C selama 60 menit. Diaduk menggunakan magnetic stirrer lalu minyak dipisahkan menggunakan centrifuge dan saring menggunakan pompa vakum. Selanjutnya dilakukan pengujian kejernihan dengan menggunakan karbon aktif sebanyak 10gr lalu di lakukan uji HPS.Setelah itu dilakukan uji kejernihan dan uji kriteria mutu.

HASIL DAN PEMBAHASAN

Karakteristik Karbon Aktif Tempurung Kelapa

Karbon aktif yang telah dilakukan pada penelitian ini dikarakteristik dengan menggunakan uji CV, BET dan SEM. Hasil karakterisasi karbon aktif pada uji CV dapat di lihat pada gambar 1. Setelah proses karakterisasi, karbon aktif dapat digunakan sebagai bahan absorben pada proses pemurnian minyak kelapa. Penambahan karbon aktif dan ekstrak daun lada dalam minyak kelapa dilakukan untuk meningkatkan kualitas minyak kelapa. Karakteristik kimia yang diamati yaitu kadar asam lemak, warna, massa jenis dan aroma.

1. Kadar Asam Lemak Bebas

Dalam menentukan kualitas minyak, tinggi rendahnya asam lemak bebas (ALB) dapat mempengaruhi kualitas dari minyak. Kadar asam lemak bebas yang terkandung dalam minyak dapat menyebabkan kolesterol dan menimbulkan ketengikan. Berdasarkan standar mutu SNI, asam lemak pada minyak bernilai < 0,3 % [10]. Penetapan asam lemak bebas pada penelitian minyak goreng dilakukan menggunakan metode titrasi dengan NaOH sampai berubah warna menjadi merah jambu. Dilakukan pengulangan sebanyak 2 kali untuk memperoleh data yang lebih akurat. Adapun hasil perhitungan asam lemak bebas pada minyak goreng yang dihasilkan pada penelitian ini disajikan pada Tabel 1.

Berdasarkan data pada Tabel 1, semua sampel minyak goreng yang dihasilkan pada penelitian ini belum memenuhi standar mutu SNI 01- 3741-2013, yaitu memiliki asam lemak bebas < 0.3%. Hal ini disebabkan suhu pemanasan yang digunakan pada penelitian ini terlalu tinggi, sehingga menyebabkan hidrolisis terhadap higliserida yang menghasilkan asam lemak bebas yang tinggi.

Tabel 1. Kandungan asam lemak bebas pada minyak

Perlakuan	Sampel	Asam Lemak Bebas (%)		
	$A1_1$	1,46		
	A1 ₂	1,14		
Terbuka (A)	A2 ₁	1,12		
	A2 ₂	1,10		
	A3 ₁	1,05		
	$A3_2$	1		
	B1 ₁	1,33		
	B1 ₂	2		
Tertutup (B)	B2 ₁	2,46		
	B2 ₂	3		
	B3 ₁	1,58		
	B3 ₂	1,46		

Tabel 2. Hasil Uji Rendemen

No	Ragi Tempe (g)	Minyak (ml)				
1.	1	285				
2.	2	270				
3.	3	360				
4.	4	270				
5.	5	254				

Tabel 3. Hasil Uji Aroma

Perlakuan Ekstrak			Minggu ke-										
(ml)		2	3	4	5	6	7	8	9	10	11	12	13
-	-	-	-	-	1	-	-	-	√	✓	✓	✓	√
0,5	-	-	-	-	-	-	-	-	-	-	-	-	
0,75	-	-	-	-	1	-	-	-	-	-	-	-	
1	-	-	-	-	-1	-	-	-	-	-	-	-	
0,5	-	-	-	-	-	-	-	-	-	-	-	-	
0,75	-	-	-	-	-	-	-	-	-	-	-	-	
1	-	-	-	-	-	-	-	-	-	-	-	-	
	(ml) - 0,5 0,75 1 0,5	(ml) 1	(ml) 1 2	(ml) 1 2 3 0,5 0,75 1 0,75 0,75 1	(ml) 1 2 3 4 0,5 1 0,75 1,75 0,75 1,75 1,75 1,75	(ml) 1 2 3 4 5 	(ml) 1 2 3 4 5 6 	(ml) 1 2 3 4 5 6 7	(ml) 1 2 3 4 5 6 7 8	(ml) 1 2 3 4 5 6 7 8 9	(ml) 1 2 3 4 5 6 7 8 9 10	(ml) 1 2 3 4 5 6 7 8 9 10 11	(ml) 1 2 3 4 5 6 7 8 9 10 11 12

2. Uji Rendemen

Setelah dilakukan uji rendemen terhadap perbandingan ragi tempe dalam pembuatan minyak dapat diperoleh data pada Tabel 2. Semakin banyak ragi tempe yang ditambahkan dalam proses pembuatan minyak goreng, minyak yang dihasilkan akan semakin meningkat. Hasil ini sesuai dengan penelitian serupa yang dilakukan Wiadnya dan Urip (2019) [11]. Pada Tabel 2 hasil minyak tertinggi pada konsentrasi ragi 3 gr sedangkan pada ragi tempe 4 gr dan 5 gr mengalami penurunan. Hal ini disebabkan karena meningkatnya jumlah mikroba yang mengakibatkan semakin banyak asam-asam yang terbentuk selama proses fermentasi dan terjadinya penumpukan produk-produk yang tidak digunakan lagi (bersifat racun) sehingga mikroba menjadi tidak aktif atau bahkan mati.

3. Uji Warna

Warna merupakan suatu peran yang penting dalam penilaian produk secara fisik. Pada penelitian ini warna pada minyak didapatkan dari uji UV-Vis yang dapat dilihat pada Gambar 3.4.

4. Uji Aroma (Bau)

Pada kualitas minyak, aroma merupakan penerimaan konsumen terhadap suatu bahan pangan. Langkah pengujian aroma dilakukan pada minyak goreng dengan penambahan ekstrak dan tanpa penambhan ekstrak. Adapun hasil uji aroma dapat dilihat pada Tabel 3. Menurut penelitian sebelumnya, ketahanan aroma minyak kelapa yaitu sekitar 8 minggu. Berdasarkan hasil penelitian pada Tabel 3 sesuai dengan penelitian sebelumnya, yang mana pada minggu ke 9 minyak kelapa tanpa perlakuan mengalami ketengikan. Hal ini disebabkan oleh otooksidasi yang dimulai dengan pembentukan radilkal-radikal bebas yang disebabkan oleh faktor peroksida lemak, cahaya, panas dan lain-lain.

5. Uji Massa Jenis

Nilai massa jenis diperoleh dengan menimbang massa minyak dan volumenya. Kemudian pengukuran dilakukan menggunakan perhitungan massa jenis sehingga di dapatkan data pada Tabel 4. Berdasarkan Tabel 4 semakin besar penambahan ektrtrak maka semakin besar juga massa jenis yang diperoleh. Selain itu perlakuan juga mempengaruhi massa jenis. Berdasarkan standar SNI besar massa jenis minyak yaitu 0,900 g/cm3. Jika dilihat dari hasil penelitian ini yang mendekati nilai standar SNI yaitu berat jenis terendah 0,9600 g/cm3 yang didapatkan dari pelakuan tetutup dengan ekstrak 0,5 ml. hal ini disebabkan karena pada perlakuan tersebut minyak goreng sangat kecil terkontaminasi dengan zat lain.

Tabel 4. Data berdasarkan perhitungan massa jenis

Perlakuan	Ekstrak (ml)	Karbon Aktif	Massa Jenis
		(gr)	(g/cm^3)
	0,5		0,9786
Terbuka _	0,75	1	0,9802
	1	_	0,9836
	0,5		0,9600
Tertutup	0,75	1	0,9725
	1		0,9739

KESIMPULAN

Berdasarkan penelitian yang telah dilakukan dapat ditarik kesimpulan bahwa penambahan ragi tempe pada pembuatan minyak kelapa kurang berpengaruh terhadap banyaknya minyak yang diperoleh. Pada uji organoleptik aroma minyak kelapa tanpa penambahan ekstrak mengalami ketengikan sedangkan pada penambahan ekstrak belum mengalami ketengikan. Pada uji kriteria mutu, nilai massa jenis mendekati standar mutu SNI yaitu 0,9600 g/cm3. Sedangkan pada uji asam lemak bebas tidak memenuhi standar SNI, hal ini disebabkan adanya pemanasan minyak yang terlalu lama.

DAFTAR PUSTAKA

- [1] G. Widjaja, "Sikap Masyarakat Sehubungan dengan Hilangnya Minyak Goreng dari Pasar di Jakarta," *Journal of Community Dedication*, vol. II, no. 1, pp. 1-11, 2022.
- [2] F. Ramadhan and R. R. Kurniawan, "Tata Kelola Perusahaan Minyak Goreng di Indonesia: Studi Literatur Fenomena Kelangkaan dan Kenaikan Harga Minyak Goreng di Indonesia," *AOSCM: Articles on Operations and Supply Chain Management (OSCM),* vol. I, no. 1, pp. 1-18, 2022.
- [3] R. N. Rahayu, "Kenaikan Harga Minyak Goreng Kelapa Sawit Di Indonesia," *Jurnal Ekonomi, Sosial & Humaniora,* vol. III, no. 8, pp. 26-36, 2022.
- [4] A. Nasution, "Panic Buying Masyarakat Terhadap Kenaikan Harga Dan Kelangkaan Minyak Goreng Di Kota Medan Denai. Jurnal Bisnis Corporate," *Journal Bisnis Corporate*, vol. VI, no. 2, pp. 113-120, 2021.
- [5] M. T. Sembiring, Sukardi, A. Suryani and M. Romla, "Model Biaya Produksi Biodiesel Berbasis Minyak Sawit. Jurnal Litbang Industri," *Jurnal Litbang Industri*, vol. V, no. 1, pp. 23-36, 2015.
- [6] A. Fitriya, A. Muhlis and H. Thohari, "emberdayaan ekonomi kerakyatan: pembuatan minyak kelapa murni (virgin coconut oil) dan blondo di Dusun Krajan Desa Balet Baru Kecamatan Sukowono Kabupaten Jember," *As-Sidanah: Jurnal Pengabdian Masyarakat,* vol. II, no. 2, pp. 243-262, 2020.
- [7] I. B. R. Wiadnya and M. E. Urip, "Pengaruh Penambahan Ragi Tempe (Rhizopus sp) Pada Pembuatan Minyak Kelapa terhadap Mutu Minyak," *J. Chem. Inf. Model*, vol. 53, no. 9, pp. 1689-1699, 2019.

- [8] I. O. Angelia, "Reduksi Tingkat Ketengikan Minyak Kelapa dengan Pemberian Antioksidan Ekstrak Daun Sirih (Piper betle Linn)," *Jurnal Technopreneur*, vol. IV, no. 1, pp. 32-36, 2016.
- [9] N. D. Siswati and J. Su, "Pemanfaatan Antioksidan Alami Flavonol Untuk Mencegah Proses Ketengikan Minyak Kelapa," *Jurnal Teknologi Pangan*, vol. IV, no. 1, pp. 1-7, 2013.
- [10] H. P. Hutapea, Y. S. Sembiring and P. Ahmadi, "Uji Kualitas Minyak Goreng Curah yang dijual di Pasar Tradisional Surakarta dengan Penentuan Kadar Air, Bilangan Asam dan Bilangan Peroksida," *QUIMICA: Jurnal Kimia Sains Dan Terapan,* vol. III, no. 1, pp. 6-11, 2021.
- [11] I. B. R. Wiadnya and M. E. Urip, "Pengaruh Penambahan Ragi Tempe (Rhizopus sp) Pada Pembuatan Minyak Kelapa terhadap Mutu Minyak," *J. Chem. Inf. Model,* vol. 53, no. 9, pp. 1689-1699, 2019.