Sifat Mekanik dan Densitas Ikatan Silang Hidrogel berbasis Tapioka Nanopartikel

  • Indah Puspita Universitas Bangka Belitung
  • Mersi Kurniati Departemen Fisika, IPB University

Abstract

Tapioca is a natural polymer that is widely used as a raw material for hydrogels. In order to improve the mechanical properties of tapioca-based hydrogels, this research modified tapioca by acid hydrolysis method for 2 hours and 24 hours and by ethanol precipitation method. This modified tapioca was further treated with epichlorohydrin with various concentrations of 0, 5, 10, and 20% to produce a three-dimensional cross-linked structure. The results showed that the increasing of epichlorohydrin concentration led to an increasing in the mechanical properties of the hydrogels consisting of hardness, stress, modulus of elasticity, and cross-linked density. The hydrogel from tapioca hydrolyzed for 24 hours and 20% epichlorohydrin was the sample with the best mechanical properties with a hardness of 19.78 mJ, a stress of 78.65 kPa, a modulus of elasticity of 233.84 mJ, and a cross-linked density of 57.61 × 1024 m-3.  

Keywords: Hydrogel; Tapioca; Hardness; Stress; Strain; Modulus of Elaticity

Downloads

Download data is not yet available.

References

A. Kalhapure, R. Kumar, V. Singh and D. Pandey, "Hydrogels: A boon for increasing agricultural productivity in water - stressed environment," General Articles, vol. 111, no. 11, pp. 1773-1779, 2016.

Erizal, S. Dewi and A. Sudrajat, "Sintesis hidrogel polietilen oksida berikatan silang dan imobilisasi antibiotik dengan cara induksi radiasi gamma untuk aplikasi pembalut luka," Jurnal Ilmiah Aplikasi Isoton dan Radiasi, vol. 5, no. 2, pp. 177-193, 2009.

G. D. Cha, W. H. Lee, C. Lim, M. K. Choi and D. H. Kim, "Materials engineering, processing, and device application of hydrogel nanocomposites," Nanoscale, vol. 12, no. 19, pp. 10456 - 10473, 2020.

T. Neethu, P. Dubey and A. Kaswala, "Prospect and application of hydrogel technology in agriculture," International Journal of Current Microbiology and Applied Science, vol. 7, no. 5, pp. 3155 - 3162, 2018.

C. Winarti, T. Sunarti and N. Richana, "Produksi dan aplikasi pati nanopartikel," Buletin Teknologi Pascapanen Pertanian, vol. 7, no. 2, pp. 104-114, 2011.

E. Syamsir, P. Hariyadi, D. Fardiaz, N. Andarwulan and F. Kusnandar, "Pengaruh proses heat-moisture treatment (TMT) terhadap karakteristik fisikokimia pati," Jurnal Teknologi dan Industri Pangan, vol. 11, no. 1, pp. 1139-1153, 2012.

M. Apriyani and E. Setyadi, "Sintesis dan karakterisasi plastik biodegradable dari pati onggok singkong dan ekstrak lidah buaya (Aloe vera) dengan plasticizer gliserol," Jurnal Sains Dasar, vol. 4, no. 2, pp. 145 - 152, 2015.

R. Suwarda and M. Maarif, "Pengembangan inovasi teknologi nanopartikel berbasis pati untuk menciptakan produk yang berdaya saing," Jurnal Teknik Industri, vol. 3, no. 2, pp. 104 - 122, 2013.

M. Kurniati, C. Winarti, F. Syamani and I. Puspita, "Nanohidrogel tapioka menggunakan epiklorohidrin sebagai agen pengikat silang," Jurnal Teknologi Industri Pertanian, vol. 29, no. 2, pp. 213-221, 2019.

Y. C. B. Piao, "One-pot synthesis and characterization of reduced graphene oxide–gelatin nanocomposite hydrogels," RSC Advances, vol. 6, no. 8, pp. 6171-6181., 2016.

J. Hurler, A. Engesland, B. Kermary and N. Basnet, "Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness," Journal of Applied Polymer Science, vol. 125, pp. 180-188, 2012.

I. Puspita, C. Winarti, A. Maddu and M. Kurniati, "Synthesis of cassava starch based nano-hydrogels using gamma irradiation," in The 5th International Seminar on Sciences, Bogor, 2019.

D. Corre, J. Bras and A. Dufresne, "Starch nanoparticles: A review," Biomacromolecules, vol. 11, no. 1, pp. 1139 - 1153, 2010.

Y. Chen, K. Zheng, L. Niu, Y. Zhang, Y. Liu, C. Wang and F. Chu, "Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles," International Journal of Biological Macromolecules, vol. 128, pp. 414-420, 2019.

A. Sezer, E. Cehver, F. Hatipoglu, A. Bas and J. Akbuga, "Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator of rabbits," Biol. Pharm. Bull., vol. 31, no. 12, pp. 2326-2333, 2008.

K. Anseth, C. Bowman and L. Peppas, "Mechanical properties of hydrogels and their experimental determination," Biomaterials, vol. 17, pp. 1647-1657, 1996.

B. Ghanbarzadeh, H. Almasi and A. Entezami, "Improving the barrier and mechanical properties of corn starch - based edible films: effect of citrid acid and carboxymethyl cellulose," Industrial Crops and Products, vol. 33, pp. 229-235, 2011.

T. Grandhi, N. Zaman, A. Banda, V. Dhamankar, C. Chu, E. Perotta and I. Kadilaya, "Mechanical characterization of extracellular matrix hydrogels: Comparison of properties measured by rheometer and texture analyzer," Asian Journal of Pharmaceutical Technology and Innovation, vol. 6, no. 28, pp. 6-21, 2018.

E. Kim, M. Kim, J. Song, C. Kang and W. Park, "Dual crosslinked alginate hydrogels by riboflavin as photoinitiator," International Journal of Biological Macromolecules, vol. 154, pp. 989-998, 2020.

I. Yunita, W. Prendika and R. Mutia, "Modifikasi pati umbut batang kelapa sawit dengan hidrolisis asam," Jurnal Teknologi Pangan dan Gizi, vol. 21, no. 1, pp. 37-42, 2022.

A. Abidin, G. Susanto and T. Puspasari, "Sintesis dan karakterisasi polimer superabsorben dari akrilamida," Jurnal Teknik Kimia Indonesia, vol. 11, no. 2, pp. 87-93, 2012.

E. Kalhapure, E. Kamoun, M. Eldin and M. El-Meligy, "Hydrogels: A boon for increasing agricultural productivity in water-stressed environment," General Articles, vol. 111, no. 11, pp. 1773-1779, 2016.

Published
2022-12-19
How to Cite
[1]
I. Puspita and M. Kurniati, “Sifat Mekanik dan Densitas Ikatan Silang Hidrogel berbasis Tapioka Nanopartikel”, JRFI, vol. 3, no. 1, pp. 32-42, Dec. 2022.
Section
Articles
Abstract viewed = 758 times
PDF (Bahasa Indonesia) downloaded = 435 times