Sistem Monitoring Kesuburan Lahan Pertanian menggunakan Sensor pH, Sensor Suhu, Intensitas Cahaya, dan Kelembapan Tanah Berbasis Internet of Things
DOI:
https://doi.org/10.33019/jrfi.v5i2.5334Keywords:
peatland agriculture, soil monitoring, IoT, soil pH, soil moisture, light intensityAbstract
This study developed an Internet of Things (IoT)-based soil fertility monitoring system to measure soil pH, soil moisture, and light intensity in real time, specifically for peatland agriculture. The system utilizes pH sensors, soil moisture sensors, and light intensity sensors calibrated with standard measuring instruments to ensure accuracy. Calibration results indicate that the pH sensor has an average error of 0.151%, the soil moisture sensor 1.11%, and the light intensity sensor 6.152%, with the latter exhibiting the highest variation due to environmental factors. Monitoring data shows that soil pH fluctuates more during the day (4.45–4.60) compared to a more stable range at night (4.75–4.80). Soil moisture remains high during the day at 85–90%, while at night, it gradually increases from 25% to 35%. Light intensity fluctuates between 9000–12000 lux during the day and approaches 0 lux at night. With high accuracy and real-time data accessibility, this system can assist farmers in optimizing irrigation, fertilization, and peatland soil management using IoT-based technology, ensuring sustainable agricultural productivity in peatland environments.
References
[1] Wahyunto, S. Rintung, dan H. Subagjo, “Peta Sebaran Lahan Gambut, Luas, dan Kandungan Karbon di Kalimantan - Indonesia,” Wetlands International-Indonesia Programme, Bogor, Jawa Barat, Indonesia, 2004.
[2] A. Dinata, “Sejarah Program Ketahanan Pangan,” Loka Litbangkes Pangandaran. Diakses: 7 September 2023.
[3] J. O. Rieley dan S. E. Page, “Carbon budgets under different land uses on tropical peatland”.
[4] M. D. Mario, “Peningkatan Produktivitas dan Stabilitas Tanah Gambut dengan Pemberian Tanah Mineral yang Diperkaya oleh Bahan Berkadar Besi Tinggi,” 2002, Diakses: 7 September 2023.
[5] I. Sasli, “Karakterisasi Gambut dengan Berbagai Bahan Amelioran dan Pengaruhnya Terhadap Sifat Fisik dan Kimia Guna Mendukung Produktivitas Lahan Gambut,” Agrovigor J. Agroekoteknologi, vol. 4, no. 1, Art. no. 1, Mar 2011
[6] M. Masganti, K. Anwar, dan M. A. Susanti, “Potensi dan Pemanfaatan Lahan Gambut Dangkal untuk Pertanian,” J. Sumberd. Lahan, vol. 11, no. 1, hlm. 43, Jun 2020
[7] A. Dariah, J. Jubaedah, W. Wahyunto, dan J. Pitono, “Pengaruh Tinggi Muka Air Saluran Drainase, Ppupik, dan Amelioran Terhadap Emisi CO2 pada Perkebunan Kelapa Sawit di Lahan Gambut,” J. Penelit. Tanam. Ind., vol. 19, no. 2, hlm. 66, Jun 2020
[8] Y. Rahmanto, A. Rifaini, S. Samsugi, dan S. D. Riskiono, “Sistem Monitoring pH Air pada Aquaponik Menggunakan Mikrokontroler Arduino Uno,” J. Teknol. Dan Sist. Tertanam, vol. 1, no. 1, Art. no. 1, Agu 2020
[9] G. Santoso, S. Hani, dan U. D. Putra, “Monitoring kualitas tanah lahan pertanian Desa Sidorejo menggunakan sensor pH tanah dan Internet of Things,” J. Nusant. Mengabdi, vol. 2, no. 1, Art. no. 1, Okt 2022
[10] M. Lukitasari, “Pengaruh Intensitas Cahaya Matahari Terhadap Pertumbuhan Tanaman Kedelai (Glycine Max),” IKIP PGRI Madiun, 2012.
[11] I. N. Saidah, R. E. W. Fahad, A. Danurwendo, S. Suyatno, D. B. Rachmat, dan Y. Cahyono, “Analisis dan Perancangan Kontrol Pencahayaan dalam Ruangan,” J. Fis. Dan Apl., vol. 7, no. 2, Art. no. 2, Jun 2011
[12] B. H. Buntoro, R. Rogomulyo, dan dan S. Trisnowati, “Pengaruh Takaran Pupuk Kandang dan Intensitas Cahaya Terhadap Pertumbuhan dan Hasil Temu Putih (Curcuma zedoaria L.).,” Vegetalika, vol. 3, no. 4, Art. no. 4, Jan 2015
[13] A. Yudhana, S. Sunardi, dan A. Ikrom, “Aplikasi Android untuk Monitoring Kualitas Lahan Pertanian,” Pros. Semin. Sains Nas. Dan Teknol., vol. 1, no. 1, Art. no. 1, Agu 2018
[14] N. Mukhayat, P. W. Ciptadi, dan R. H. Hardyanto, “Sistem Monitoring pH Tanah, Intensitas Cahaya Dan Kelembaban Pada Tanaman Cabai (Smart Garden) Berbasis IoT,” Seri Pros. Semin. Nas. Din. Inform., vol. 5, no. 1, Art. no. 1, Mei 2021, Diakses: 7 September 2023.
[15] A. B. Setyawan, M. H. H. Ichsan, dan G. E. Setyawan, “Sistem Monitoring Kelembaban Tanah, Kelembaban Udara, Dan Suhu Pada Lahan Pertanian Menggunakan Protokol MQTT,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 2, no. 12, Art. no. 12, Agu 2018.
[16] D. A. Ramadhani, E. P. Hidayat, dan A. T. Nugraha, “Pemanfaatan Sensor Ultrasonik sebagai Purwarupa Pengukur Ketinggian Air pada Tangki Pembuangan Air Kotor di Kapal,” Elektriese J. Sains Dan Teknol. Elektro, vol. 12, no. 02, Art. no. 02, Nov 2022
[17] M. S. Budiman, E. Roza, dan Rosalina, “Pengujian Sistem Pengendalian IoT pada Tanaman Aglonema Dengan Menggunakan Mikrokontroller,” Pros. Semin. Nas. Teknoka, vol. 6, hlm. 217–222, 2021.
[18] W. I. S. A. Talli, J. D. Irawan, dan F. X. Ariwibisono, “Rancang Bangun Sistem Monitoring Kualitas Tanah Untuk Tanaman Cabai Berbasis Iot (Internet of Things),” JATI J. Mhs. Tek. Inform., vol. 7, no. 4, Art. no. 4, Des 2023
[19] A. Ruiz-Gonzalez, H. Kempson, dan J. Haseloff, “In Vivo Sensing of pH in Tomato Plants Using a Low-Cost and Open-Source Device for Precision Agriculture,” Biosensors, vol. 12, no. 7, Art. no. 7, Jul 2022
[20] R. Hinojosa-Meza, E. Olvera-Gonzalez, N. Escalante-Garcia, J. A. Dena-Aguilar, M. Montes Rivera, dan P. Vacas-Jacques, “Cost-Effective and Portable Instrumentation to Enable Accurate pH Measurements for Global Industry 4.0 and Vertical Farming Applications,” Appl. Sci., vol. 12, no. 14, Art. no. 14, Jan 2022
[21] A. Qin, D. Ning, Z. Liu, dan A. Duan, “Analysis of the Accuracy of an FDR Sensor in Soil Moisture Measurement under Laboratory and Field Conditions,” J. Sens., vol. 2021, no. 1, hlm. 6665829, 2021
[22] M. W. Rasheed dkk., “Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review,” Sustainability, vol. 14, no. 18, Art. no. 18, Jan 2022
[23] Yashaswini, S. Pratibha, Y. B. Vinay Kumar, dan R. Venkatesh, “Voltammetric Sensors for the Analysis of Agricultural-Related Biomolecules,” dalam Advancements in Voltammetry for Biosensing Applications, J. G. Manjunatha, Ed., Singapore: Springer Nature, 2025, hlm. 357–371
[24] W. Zhou, G. Han, M. Liu, dan X. Li, “Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand,” PeerJ, vol. 7, hlm. e7880, Okt 2019
[25] Y. Yang, Y. Shi, J. Fang, H. Chu, dan J. M. Adams, “Soil Microbial Network Complexity Varies With pH as a Continuum, Not a Threshold, Across the North China Plain,” Front. Microbiol., vol. 13, Jun 2022
[26] J. Zhang dkk., “Neutral pH induces complex and stable soil microbial networks in agricultural ecosystems,” Plant Soil, Feb 2025
[27] E. Duarte dan A. Hernandez, “A Review on Soil Moisture Dynamics Monitoring in Semi-Arid Ecosystems: Methods, Techniques, and Tools Applied at Different Scales,” Appl. Sci., vol. 14, no. 17, Art. no. 17, Jan 2024
[28] P. Xin, B. Li, H. Zhang, dan J. Hu, “Optimization and control of the light environment for greenhouse crop production,” Sci. Rep., vol. 9, no. 1, hlm. 8650, Jun 2019
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Samsul Arifin, Neny Kurniawati, Reni Agustiani, Gabriela Elsandika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












