Analisis Pengaruh Penambahan Minor Aktinida Am-241 dan Np-237 pada Performa Sel Bahan Bakar Uranium Metallic U-10%wtZr

Authors

  • Muhamad Tauffan Hidayatullah Norman Universitas Sriwijaya
  • Fiber Monado Universitas Sriwijaya
  • Menik Ariani Universitas Sriwijaya

DOI:

https://doi.org/10.33019/jrfi.v5i2.5864

Keywords:

Gas cool-Fast Reactor; Nuclear Waste; SRAC

Abstract

Nuclear reactors are capable of producing electricity using nuclear fuel in a sustainable system. Despite its benefits, the combustion of nuclear fuel in a reactor produces fission products known as nuclear waste. One type of nuclear waste is minor actinide, minor actinide is included in burnable poison so it can be recycled as additional fuel. This research was conducted to analyze the effect of the addition of minor actinides Am-241 and Np-237 on the burn-up performance of the Uranium Metallic U-10%wtZr fuel cell in a Gas cool-Fast Reactor with S-CO2 gas coolant and stainless steel cladding material. SS-316. The fuel pin was designed to be cylindrical with a diameter of 1.4 cm and then tested by adding 0 – 8% minor actinide to the fuel. Calculations were carried out based on the neutron transport equation using the SRAC program which produces survey parameters : Kinf value, burn-up level, conversion ratio, and atomic density throughout the burn-up period of 120 years. The results show that there is a slight increase in the Kinf value for each minor actinide addition at the beginning to the end of the burn-up period. The total atomic density of Am-241 and Np-237 in the fuel added with minor actinides decreased as the burn-up period ended. The addition of minor actinides did not have a significant effect on the neutronic performance of U-10%wtZr fuel but was able to reduce the amount of Am-241 and Np-237 elements at the end of the burn-up period.

References

[1] A. R. Septiana, E. Kartini, W. Honggowiranto, S. Sudaryanto, and R. Hidayat, “Efek Penggunaan Cairan Ionik sebagai Aditif terhadap Konduktivitas Ionik Elektrolit Baterai Ion Litium,” Indonesian Journal of Applied Physics, vol. 9, no. 02, 2019

[2] D. C. P. Putra, Imani Rizkia Dawami, Muhammad Rofiul Haq, Achmad Daffa Danang Luthfiansyah, Alfan Mubarok, and Dafit Ari Prasetyo, “Konsep Rancang Bangun Smart Home Base Berbasis IOT untuk Skala Perumahan,” Journal of Engineering Science and Technology, vol. 1, no. 2, 2023

[3] C. A. Pratama, M. Priyatna, and Y. Adharani, “Kesiapan Regulasi Indonesia dalam Mengelola Energi Nuklir serta Dampaknya Terhadap Lingkungan Hidup,” LITRA: Jurnal Hukum Lingkungan, Tata Ruang, dan Agraria, vol. 3, no. 1, 2023

[4] H. Susiati et al., Pembangkit Listrik Tenaga Nuklir di Indonesia (Upaya Berkelanjutan Menuju Net Zero Emission), no. May. 2023.

[5] A. Ibrahim, “Neutronic comparative analysis between DOE and CEA model designs for fourth generation 2400 MW-th gas cooled fast reactor,” International Journal of Nuclear Energy Science and Technology, vol. 16, no. 4, 2023

[6] A. Z. Paydar, S. K. M. Balgehshiri, and B. Zohuri, “Next generation nuclear plant (NGNP),” in Advanced Reactor Concepts (ARC), 2023

[7] S. Novalianda, “Power Flattening Desain Reaktor GFR Berbasis Bahan Bakar Uranium Plutonium Nitride (U, Pu)N,” Journal of Electrical Technology, vol. 4, no. 3, 2019.

[8] F. H. Irka, Z. Su’ud, D. Irwanto, S. N. Khotimah, and H. Sekimoto, “Analisis Kekritisan dan Rasio Konversi Reaktor Cepat Berpendingin Gas dengan Variasi Fraksi Bahan Bakar UN-PuN Menggunakan Skema Burn-up Modified CANDLE Arah Radial,” Newton-Maxwell Journal of Physics, vol. 4, no. 1, 2023

[9] R. Riska, D. Fitriyani, and F. H. Irka, “Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO2, N2),” Jurnal Fiskas Unand, vol. 5, pp. 28–34, 2016.

[10] W. Sardi, D. Fitriyani, and F. H. Irka, “Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Umur Teras dan Daya Reaktor,” Jurnal Fisika Unand, vol. 7, no. 2, 2018

[11] S. Novalianda, P. M. Sihombing, and F. N. Hulu, “Studi Desain Sel Bahan Bakar Thorium Nitride (ThN) pada Gas-Cooled Fast Reactor,” 2022.

[12] R. Darmawati, M. Ariani, and F. Monado, “Desain Konseptual Teras Reaktor Cepat Berumur Panjang Berpendingin S-CO2 dengan Bahan Bakar Uranium Metalik Alam,” Jurnal Fisika Unand, vol. 9, no. 3, 2020

[13] V. Vionita, F. Monado, M. Ariani, and I. Royani, “Perhitungan Desain Konsep Reaktor Cepat Berpendingin Karbondioksida Superkritis dan Berbahan Bakar Uranium Metalik Alam,” Jurnal Teori dan Aplikasi Fisika, vol. 10, no. 2, 2022

[14] F. Al Afghani, Yanlinastuti, A. S. D. Putri, Y. D. A. Susanto, and R. Sigit, “Pengaruh Suhu Hydriding Terhadap Laju Korosi Material Struktur Reaktor Nuklir Berbasis Paduan Zirconium dan Baja Tahan Karat,” Majalah Ilmiah Pengelolaan Instalasi Nuklir, 2019.

[15] M. L. Terranova and O. A. P. Tavares, “Trends and Perspectives on Nuclear Waste Management: Recovering, Recycling, and Reusing,” Journal of Nuclear Engineering, vol. 5, no. 3, pp. 299–317, Aug. 2024

[16] Ferhat Aziz, Pemanfaatan Pemodelan dan Simulasi Berbasis Komputasi dalam Pengembangan Reaktor Nuklir. 2023

[17] P. Ramadania, “Postur Kerja Pekerja Pengelolaan Limbah Radioaktif Padat di Instalasi Nuklir X : Potensi Risiko dan Rekomendasi Pengendalian,” Reaktor : Buletin Pengelolaan Reaktor Nuklir, vol. 19, no. 1, 2022, doi: 10.17146/bprn.2022.19.1.6537.

[18] D. Hariyanto and S. Permana, “Three-dimensional (X-Y-Z) Core Design of Long-Life Pressurized Water Reactor Using (Th-U)O2 Fuels with The Addition of Gd2O3 and Pa-231 as Burnable Poisons,” Indonesian Journal of Physics, vol. 31, no. 1, 2020

[19] S. M. Reda, S. S. Mustafa, and N. A. Elkhawas, “Investigating the Performance and safety features of Pressurized water reactors using the burnable poisons,” Ann Nucl Energy, vol. 141, 2020, doi: 10.1016/j.anucene.2020.107354.

[20] M. L. Grossbeck and J.-P. A. Renier, “Development Of Improved Burnable Poisons For Commercial Nuclear Power Reactors Final Report on NERI Project Number 99-0074,” Other Information: PBD: 30 Sep 2003, no. 99, 2003.

[21] W. E. Russell II, C. Monetta, and L. Trosman, “Burnable poison materials and apparatuses for nuclear reactors and methods of using the same,” Oct. 20, 2010

[22] H. Guo, T. Kooyman, P. Sciora, and L. Buiron, “Application of Minor Actinides as Burnable Poisons in Sodium Fast Reactors,” Nucl Technol, vol. 205, no. 11, 2019

[23] W. Gontina, F. Monado, and M. Ariani, “Studi Parameter Burn-up Sel Bahan Bakar Uranium Nitrit Dengan Penambahan Minor Aktinida Berpendingin S-CO2,” Jurnal Penelitian Sains, vol. 24, no. 3, 2022

[24] R. Darmawati, M. Ariani, and F. Monado, “Desain Konseptual Teras Reaktor Cepat Berumur Panjang Berpendingin S-CO2 dengan Bahan Bakar Uranium Metalik Alam,” Jurnal Fisika Unand, vol. 9, no. 3, pp. 401–407, Aug. 2020

[25] R. D. Syarifah and Z. Suud, “The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor,” in AIP Conference Proceedings, 2015

[26] V. V. Korobeinikov, V. V. Kolesov, and A. V. Mikhalev, “Comparison of the minor actinide transmutation efficiency in models of a fast neutron uranium-thorium fueled reactor,” Nuclear Energy and Technology, vol. 8, no. 1, 2022

Published

2025-06-28

Issue

Section

Articles

How to Cite

[1]
“Analisis Pengaruh Penambahan Minor Aktinida Am-241 dan Np-237 pada Performa Sel Bahan Bakar Uranium Metallic U-10%wtZr”, JRFI, vol. 5, no. 2, pp. 86–96, Jun. 2025, doi: 10.33019/jrfi.v5i2.5864.