Scaffold Hidroksiapatit (HAp) dari Limbah Tulang Ikan Tenggiri (Scomberomorus commerson): Studi Variasi PVA Terhadap Ukuran Kristal dan Ukuran Pori

Authors

  • Meisa Rohania Universitas Jambi
  • Frastica Deswardani Universitas Jambi
  • Yoza Fendriani Program Studi Fisika, Universitas Jambi
  • Ria Anjelina Program Studi Fisika, Universitas Jambi
  • Rista Mutia Anggraini Universitas Jambi
  • Lucky Zaehir Maulana Program Studi Fisika, Universitas Jambi
  • Febri Berthalita Pujaningsih Program Studi Fisika, Universitas Jambi

DOI:

https://doi.org/10.33019/jrfi.v5i2.6410

Keywords:

hydroxyapatite, corn starch, polyvinyl alcohol, scaffolds, freeze-drying

Abstract

Defects in bone tissue represent a significant health concern and continue to pose challenges in clinical surgery. The fabrication of scaffolds from hydroxyapatite (HAp) can support bone regeneration. However, producing HAp scaffolds with ideal pore structures for effective bone tissue engineering remains difficult. In recent decades, many studies have attempted to enhance HAp scaffolds by incorporating polymeric materials to address their limitations. In this study, corn starch was used as a pore-forming agent, and polyvinyl alcohol (PVA) served as a binder and pore size regulator. The scaffolds were fabricated using the freeze-drying method, which offers the advantage of forming porous structures while maintaining scaffold integrity. This study investigated the effects of varying PVA additions which 3 wt%, 7 wt%, and 10 wt%. XRD analysis showed that the diffraction peaks of all samples corresponded to the HAp phase, displayed β-TCP peaks, and a crystal size with values ranging from 0.96 nm to 11.77 nm.  SEM analysis showed that the HAp-7 scaffold has the largest pore size distribution range of about 1.19 µm to 11.77 µm.

References

[1] Q. Wei et al., “Modification of hydroxyapatite (HA) powder by carboxymethyl chitosan (CMCS) for 3D printing bioceramic bone scaffolds,” Ceram. Int., vol. 49, pp. 538–547, 2023,

[2] S. Kashte, A. K. Jaiswal, and S. Kadam, “Artificial Bone via Bone Tissue Engineering: Current Scenario and Challenges,” Tissue Eng. Regen. Med., vol. 14, no. 1, pp. 1–14, 2017,

[3] T. C. Wahyudi, I. Sukmana, and S. Savetlana, “Potensi pengembangan material implan tulang hidroksiapatit berbasis bahan alam lokal,” in Book Chapter Kolokium Teknik, vol. 3, no. 1, 2019, pp. 1–5.

[4] D. O. Obada, E. T. Dauda, J. K. Abifarin, D. Dodoo-Arhin, and N. D. Bansod, “Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature,” Mater. Chem. Phys., vol. 239, p. 122099, 2020,

[5] L. Anggresani, S. Perawati, F. Diana, and D. Sutrisno, “Pengaruh variasi perbandingan mol Ca / P pada hidroksiapatit berpori tulang ikan tenggiri ( Scomberomorus guttatus ),” J. Farm. Higea, vol. 12, no. 1, pp. 55–64, 2020.

[6] K. C. Vinoth Kumar et al., “Spectral characterization of hydroxyapatite extracted from Black Sumatra and Fighting cock bone samples: A comparative analysis,” Saudi J. Biol. Sci., vol. 28, no. 1, pp. 840–846, 2021

[7] S. Chen, Y. Shi, X. Zhang, and J. Ma, “3D printed hydroxyapatite composite scaffolds with enhanced mechanical properties,” Ceram. Int., vol. 45, no. 8, pp. 10991–10996, 2019

[8] R. Gnanasekaran et al., “Extraction and characterization of biocompatible hydroxyapatite (Hap) from red big eye fish bone: Potential for biomedical applications and reducing biowastes,” Sustain. Chem. Environ., vol. 7, p. 100142, 2024,

[9] J. A. da Cruz, R. R. Pezarini, A. J. M. Sales, S. R. Benjamin, P. M. de Oliveira Silva, and M. P. F. Graça, “Study of biphasic calcium phosphate (BCP) ceramics of tilapia fish bones by age,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 316, p. 124289, 2024

[10] R. A. P. Purba, F. Deswardani, R. M. Anggraini, Y. Fendriani, and T. Restianingsih, “Ekstraksi dan karakterisasi hidroksiapatit (HAp) dari tulang ikan tenggiri (Scomberomorus commersoni) dengan metode heat treatment,” J. Fis. Unand, vol. 13, no. 2, pp. 247–253, 2024

[11] Y. Yusuf et al., Hidroksiapatit Berbahan Dasar Biogenik. D.I. Yogyakarta: Gadjah Mada University Press, 2019.

[12] Y. Yusuf and A. H. Diputra, Konsep Dasar Scaffold Biomaterial dan Rekayasa Jaringan. D.I. Yogyakarta: Gadjah Mada University Press, 2024.

[13] S. Ragunathan, G. Govindasamy, D. R. Raghul, M. Karuppaswamy, and R. K. Vijayachandratogo, “Hydroxyapatite reinforced natural polymer scaffold for bone tissue regeneration,” Mater. Today Proc., vol. 23, pp. 111–118, 2019

[14] L. Cui et al., “Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation,” Biomaterials, vol. 230, p. 119617, 2020

[15] C. Y. Beh et al., “Fabrication and characterization of three-dimensional porous cornstarch/n-HAp biocomposite scaffold,” Bull. Mater. Sci., vol. 43, p. 249, 2020

[16] A. Kumar and A. Jacob, “Techniques in scaffold fabrication process for tissue engineering applications: A review,” J. Appl. Biol. Biotechnol., vol. 10, no. 3, pp. 163–176, 2022

[17] A. F. Akbar, F. Q. ’Aini, B. Nugroho, and S. E. Cahyaningrum, “SINTESIS DAN KARAKTERISASI HIDROKSIAPATIT TULANG IKAN BAUNG (Hemibagrus nemurus sp.) SEBAGAI KANDIDAT IMPLAN TULANG,” J. Kim. Ris., vol. 6, no. 2, pp. 93–101, 2021

[18] S. P. Ishwarya, “spray freeze drying : A novel process for the drying of foods and bioproducts,” Trends Food Sci. Technol., pp. 1–21, 2014

[19] F. Miculescu et al., “Synthesis and characterization of jelli fi ed composites from bovine bone derived hydroxyapatite and starch as precursors for robocasting,” ACS Publ., vol. 3, pp. 1338–1349, 2018

[20] J. M. F. Ferreira, “The key features expected from a perfect bioactive glass how far we still are from an ideal composition?,” Biomed. J. Sci. dan Tech. Res., vol. 1, no. 4, pp. 936–939, 2017

[21] O. Ozkendir et al., “Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration,” Biomater. Adv., vol. 157, p. 213732, 2024

[22] C. M. Murphy, M. G. Haugh, and F. J. O’Brien, “The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering,” Biomaterials, vol. 31, no. 3, pp. 461–466, 2010

[23] V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005

[24] S. S. Salcedo, D. Arcos, and M. Vallet-regí, “Upgrading calcium phosphate scaffolds for tissue engineering applications,” Eng. Mater., vol. 377, pp. 19–42, 2008

[25] J. R. Ramya, K. T. Arul, K. Elayaraja, and S. N. Kalkura, “Physicochemical and biological properties of iron and zinc ions co-doped nanocrystalline hydroxyapatite, synthesized by ultrasonication,” Ceram. Int., vol. 40, no. PB, pp. 16707–16717, 2014

[26] S. Rahman, K. H. Maria, M. S. Ishtiaque, A. Nahar, H. Das, and S. M. Hoque, “Evaluation of a novel nanocrystalline hydroxyapatite powder and a solid hydroxyapatite/Chitosan-Gelatin bioceramic for scaffold preparation used as a bone substitute material,” Turkish J. Chem., vol. 44, no. 4, pp. 848–900, 2020

[27] I. Pawarangan and Y. Yusuf, “Characteristics of hydroxyapatite from buffalo bone waste synthesized by precipitation method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 432, pp. 1–6, 2018

[28] S. Bee and Z. A. A. Hamid, “Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration,” Compos. Part B, vol. 163, pp. 562–573, 2019

[29] S. L. Bee, M. Mariatti, N. Ahmad, B. H. Yahaya, and Z. A. Abdul Hamid, “Effect of the calcination temperature on the properties of natural hydroxyapatite derived from chicken bone wastes,” Mater. Today Proc., vol. 16, pp. 1876–1885, 2019

[30] N. R. El-Bahrawy, H. Elgharbawy, A. Elmekawy, M. Salem, and R. Morsy, “Development of porous hydroxyapatite/PVA/gelatin/alginate hybrid flexible scaffolds with improved mechanical properties for bone tissue engineering,” Mater. Chem. Phys., vol. 319, p. 129332, 2024

[31] H. E. Jazayeri et al., “The cross-disciplinary emergence of 3D printed bioceramic scaffolds in orthopedic bioengineering,” Ceram. Int., vol. 44, no. 1, pp. 1–9, 2018

[32] T. Hemamalini and V. R. G. Dev, “Comprehensive review on electrospinning of starch polymer for biomedical applications,” Int. J. Biol. Macromol., vol. 106, pp. 712–718, 2018

[33] A. Mahanty, R. Kumar, D. Shikha, and J. R. Guerra-López, “Comparative Investigation of structural, mechanical, corrosion, thrombogenicity, and antimicrobial properties of 1.5 wt% and 10 wt% PVA doped hydroxyapatite,” Ceram. Int., vol. 51, pp. 5778–5789, 2024

Published

2025-07-23

Issue

Section

Articles

How to Cite

[1]
“Scaffold Hidroksiapatit (HAp) dari Limbah Tulang Ikan Tenggiri (Scomberomorus commerson): Studi Variasi PVA Terhadap Ukuran Kristal dan Ukuran Pori”, JRFI, vol. 5, no. 2, pp. 121–129, Jul. 2025, doi: 10.33019/jrfi.v5i2.6410.