STRUKTUR KOMUNITAS DAN STATUS KONSERVASI IKAN HASIL TANGKAPAN DENGAN ALAT TANGKAP SERO DI DESA TANJUNG BINGA KABUPATEN BELITUNG

STRUCTURE COMMUNITY AND STATUS CONSERVATION FISH RESULTS CATCH WITH TOOL CATCH SERO IN TANJUNG BINGA VILLAGE BELITUNG REGENCY

Lonameta*, Andi Gustomi, M. Rizza Muftiadi

Program Studi Manajemen Sumberdaya Perairan, Fakultas Pertanian Perikanan dan Kelautan,
Universitas Bangka Belitung
Kampus Terpadu Universitas Bangka Belitung, Gedung Teladan, Bangka,
Kepulauan Bangka Belitung, 33172 Indonesia
Email: lonameta96@gmail.com

ABSTRAK

Penelitian ini bertujuan untuk mengetahui komposisi jenis, keanekaragaman, keseragaman, dominansi dan status konservasi pada Sero. Penelitian ini dilaksanakan pada bulan Januari 2024 di Pantai Secupak Desa Tanjung Binga. Hasil penelitian ditemukan yaitu 2.257 individu terdapat 53 spesies ikan dan 37 famili. Komposisi jenis per stasiun tertinggi di stasiun 1 nilainya 8,73% yaitu Selar crumenophthalmus, Sardinella albella, dan Apogonichthyoides melas. Stasiun 2 nilainya 10,87% yaitu Selar crumenophthalmus dan stasiun 3 nilainya 19,41% yaitu Siganus canaliculatus. Hasil penelitian komposisi jenis secara keseluruhan tertinggi yaitu Siganus canaliculatus nilainya 13,07% dan 295 individu. Komposisi jenis terendah nilainya 0,27% dan 6 individu, yaitu Echeneis naucrates dan Carangoides malabaricus. Keanekaragaman jenis ikan kategori Sedang, keseragaman kategori Rendah dan dominansi kategori Rendah. Status konservasi ikan yaitu kategori IUCN Redlist seluruh status berisiko rendah, kekurangan data dan Tidak dievaluasi. CITES seluruh ikan status Tidak Dievaluasi dan Permen KP No 1 Tahun 2021 seluruh jenis ikan status Tidak dievaluasi.

Kata kunci: Struktur Komunitas, Alat Tangkap Sero, Status Konservasi

ABSTRACT

The research aims to determine the species composition, diversity, uniformity, dominance and conservation status in sero. The research was carried out in January 2024 at Secupak Beach, Tanjung Binga Village. The research results found that 2.257 individual there are 53 fish species and 37 families. The highest species composition per station is at station 1 8,73% that is Selar crumenophthalmus, Sardinella albella, and Apogonichthyoides melas. Station 2 value 10,87% that is Selar crumenophthalmus and station 3 value 19,41% that is Siganus canaliculatus. The highest overall species composition research results were Siganus canaliculatus value 13,07% and 295 individual. Composition of the lowest value type 0,27% and 6 individual, that is Echeneis naucrates and Carangoides malabaricus. Medium diversity of fish species, low category uniformity and low category dominance. Fish conservation status namely categories IUCN Redlist all low risk statuses, lack of data and not evaluated. CITES all fish status is not evaluated and Permen KP No 1 year 2021 all types of fish status is not evaluated.

Keywords: Community structure, Sero fishing gear, Conservation status

PENDAHULUAN

Desa Tanjung Binga merupakan salah satu Desa yang terletak di Kecamatan Sijuk Kabupaten Belitung. Desa ini terletak pada ketinggian 18 mdpl dan memiliki luas sekitar 218.000 km² (Jadesta, 2022). Penduduk desa ini mempunyai suku yaitu suku Bugis, Melayu, dan Jawa. Desa Tanjung Binga

memiliki Pantai Secupak yaitu pantai yang dimanfaatkan para nelayan dan pemancing untuk mencari ikan di laut. Pantai Secupak adalah tempat dimana adanya alat penangkapan ikan yaitu sero.

E-ISSN: 2623-2235

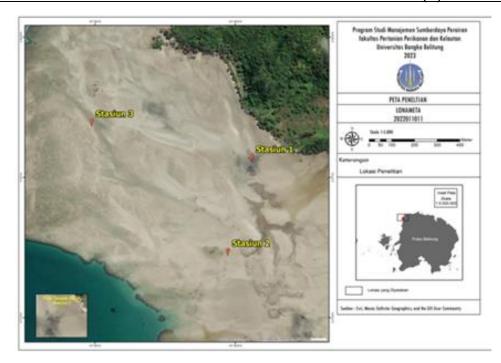
Sero merupakan salah satu alat tangkap yang digunakan oleh nelayan Desa Tanjung Binga, Kecamatan Sijuk, Kabupaten

Belitung. Alat tangkap sero merupakan alat tangkap yang digunakan oleh nelayan di pesisir pantai berbentuk perangkap besar yang sifatnya menetap (Anggraini et al., 2021). Sistem kerja sero yaitu dengan cara menghadang ikan dan memanfaatkan arus pasang surut air laut tanpa (Sudirman, 2013). Sero merupakan alat tangkap yang sangat dipengaruhi oleh pasang surut air laut, pada saat air surut akan mengambil nelayan ikan vana terperangkap atau disaat pasang berenang menyusuri pagar-pagar yang akan menuntun ikan menuju perangkap (Yunita et al., 2021). Selain itu, dalam penempatan sero adanya perubahan suhu dan pola arus yang terjadi sehingga akan mempengaruhi ikan dalam aktivitas ikan terutama untuk mencari makan, bertelur, melakukan ruaya dan migrasi (Sahidi et al., 2015).

Struktur komunitas merupakan suatu konsep mempelajari urutan yang komposisi spesies dan kelimpahan pada suatu komunitas. Agar setiap jenis biota perairan dapat bertahan hidup dan berkembang biak, sehingga mampu beradaptasi dengan lingkungannya, dan komposisi biota perairan sangat dipengaruhi oleh faktor perubahan fisika, kimia, dan biologi. Belum adanya informasi mengenai komposisi jenis ikan, keanekaragaman, keseragaman, dan dominansi hasil tangkapan dengan tangkap sero di Pantai Secupak, sehingga diperlukan penelitian agar pengelolaannya optimal dengan baik secara aspek ekologis maupun ekonomis.

Akan tetapi, Jenis dan ukuran spesies tidak secara spesifik menargetkan perikanan, spesies yang dilindungi, organisme yang terancam punah dan tidak terduga (Lutfiani et al., 2018). Pengoperasian sero sangat sederhana karena setelah alat tangkap ini dipasang di perairan, ikan-ikan yang telah melewati penaju dan ikan akan masuk ke dalam kantong, agar hasil tangkapan bisa diambil (Surachmat et al., 2017). Namun permasalahan dalam penangkapan banyak ikan atau biota laut lainnya yang tertangkap pada sero karena ukuran mata jaring mesh size yang sangat kecil 0,5 inci. Sehingga membuat ikan yang berukuran kecil ikut tertangkap dan mati ke dalam sero.

Berdasarkan permasalahan yang ada, maka diperlukan pengelolaan perikanan yang berkelanjutan untuk menjaga keberadaan ikan-ikan yang terancam punah. Untuk menentukan ikan tersebut dikaterogikan punah atau tidak maka dilakukan dengan konfirmasi spesies ikan pada IUCN red list


sebagai upaya konservasi terhadap pelestarian ikan (Sukmono et al., 2013). Oleh karena itu, hal ini memberikan dasar bagi penelitian mengenai Struktur Komunitas dan Status Konservasi Ikan, yang dapat digunakan sebagai dasar pengelolaan sumber daya perikanan berkelanjutan. Harapannya, penelitian ini dapat memberikan wawasan mengenai pentingnya konservasi berkelanjutan terhadap spesies ikan yang dilindungi.

METODE PENELITIAN

Penentuan titik stasiun pengambilan metode menggunakan purposive sampling. Hasil survei awal ke lokasi terdapat 10 alat tangkap sero, tapi karena faktor hanya tersisa 3 alat tangkap. Pengambilan sampel ikan dilakukan di dalam alat tangkap sero yang disebut kantong dengan menggunakan alat bantu serok. Metode observasi lapangan digunakan untuk pengambilan sampel. Teknik pengambilan sampel adalah secara purposive sampling. Sugiyono (2017) mengungkapkan bahwa purposive sampling adalah suatu metode menentukan untuk sampel pertimbangan tertentu. Adapun peta lokasi penelitian dapat dilihat pada gambar 2.

Pengambilan sampel dengan menggunakan alat bantu serok ikan. Serok berfungsi untuk menangkap ikan dan memindahkannya ke keranjang. Sampel ikan yang telah tertangkap dilakukan dengan mengidentifikasi ikan. Mengidentifikasi ikan dilakukan dengan cara meletakkan ikan di styrofoam , kemudian mengukur panjang ikan dari ujung rahang atas hingga ke ujung ekor secara horizontal, dan setelah itu ikan difoto dengan kamera kemudian dicatat. Lakukan hal yang sama pada semua sampel ikan yang ingin di identifikasi. Sampel ikan diidentifikasi secara langsung dengan menggunakan website www.fishbase.us/ dan www.marinespecies.org/. Buku untuk identifikasi spesies ikan yang digunakan adalah buku Reef fish identification Tropical Pacific fisheris dan buku Market Fishes Of Indonesia. Sampel yang telah dilakukan identifikasi, kemudian dilihat status konservasi ikan tersebut berdasarkan IUCN dan CITES.

Metode Wawancara merupakan pertemuan antara dua orana teriadi pertukaran informasi dan ide melalui tanya jawab untuk dikonstruksikan makna dalam suatu topik tertentu (Sugiyono, 2017). dilakukan langsung Wawancara secara dengan 1 nelayan sero di Pantai Secupak.

Gambar 1. Peta Lokasi Penelitian

Wawancara dengan nelayan sebagai responden mengenai jenis ikan hasil metode tangkapan, nama lokal ikan, pengoperasian sero, waktu pengoperasian alat tangkap sero, waktu pasang surut, pertimbangan nelayan dalam pemasangan alat tangkap sero, ikan-ikan tersebut ditangkap dijual atau untuk kebutuhan rumah tangga, biaya satu unit sero dan keuntungan berapa dari hasil sero.

Pengambilan parameter lingkungan dilakukan secara in situ pada saat di lapangan. Parameter lingkungan yang diukur antara lain suhu, salinitas, kecepatan arus, kedalaman dan kecerahan. Pengambilan parameter suhu dengan menggunakan thermometer. Salinitas diukur dengan menggunakan refraktometer. Kecepatan arus dengan menggunakan botol arus yaitu stopwatch. Mengukur kecerahan dengan secchi disk dan kedalaman dengan menggunakan secchi disk dan roll meter.

HASIL DAN PEMBAHASAN

Berdasarkan hasil penelitian pada alat tangkap sero secara keseluruhan jenis ikan yang tertangkap dengan alat tangkap sero selama penelitian sebanyak 2.257 individu yang terdiri dari 53 spesies ikan dan 37 famili. Berdasarkan hasil data di lapangan pada tabel 1 komposisi jenis ikan per stasiun komposisi jenis tertinggi pada alat tangkap sero di stasiun 1 yaitu dengan nilai sebesar 8,73% terdiri dari spesies (Selar *crumenophthalmus*) selar bentong,

(Sardinella albella) tamban dan (Apogonichthyoides melas) seriding, stasiun 2 dengan nilai 10,87% yaitu spesies (Selar crumenophthalmus) ikan selar bentong, dan stasiun 3 dengan nilai sebesar 19,41% yaitu spesies (Siganus canaliculatus) ikan baronang lingkis.

Tingginya komposisi jenis ikan selar bentong di Stasiun 1 disebabkan karena jenis ikan ini banyak ditemukan di padang lamun dan hidup berkelompok di perairan pantai dengan kedalaman 80 m (Fauzi et al., 2018). Ikan tamban termasuk ikan yang bermigrasi cukup tinggi. Ikan tamban bermigrasi untuk mencari kondisi lingkungan yang sesuai, salah satunya untuk mencari makanan (Madhavi et al., 2012). Ikan Seriding banyak ditemukan di perairan dekat pantai dan mendominansi perairan (Sichum et al., 2013). Pada stasiun 2 komposisi jenis ikan tertinggi terdapat pada jenis ikan selar bentong. Ikan selar bentong merupakan jenis ikan pelagis kecil yang cukup dominan tertangkap dengan alat tangkap sero.

Komposisi jenis ikan tertinggi pada stasiun 3 terdapat pada ikan baronang lingkis. Ikan baronang lingkis banyak dijumpai pada alat tangkap sero dan tingginya jumlah individu disebabkan karena ikan ini merupakan jenis atau spesies ikan yang hidup secara bergerombol di daerah pantai pada saat air pasang dan berenang untuk mencari makan dan termasuk ke dalam kategori ikan yang berenang bebas. Selain berasosiasi dengan padang lamun,

Siganus canaliculatus juga memiliki preferensi habitat yang beragam, antara lain muara, mangrove, dan terumbu karang (Latuconsina et al., 2019).

Komposisi jenis ikan berdasarkan kategori ikan karang yang tertinggi pada kategori ikan mayor di stasiun 1 yaitu, Ikan Tamban dengan nilai sebesar 8,73% dan Ikan Seriding Pengka dengan nilai 8,73%. Stasiun 2 memiliki komposisi jenis ikan tertinggi kategori ikan karang terdapat pada jenis yaitu ikan tamban dengan nilai 4,05% sedangkan pada stasiun 3 komposisi jenis kategori ikan karang yaitu ikan mengkapas dengan nilai sebesar 7,76%. Pada kategori ikan indikator terdapat 2 spesies yaitu ikan tudong kendi (Chelmon rostratus) dan tudong kendi (Chaetodon octofasciatus).

Kategori ikan indikator pada stasiun 1 dengan komposisi jenis ikan tertinggi yaitu ikan tudong kendi (Chaetodon octofasciatus) dengan nilai 3,49%. Pada stasiun 2 dan 3 mempunyai komposisi stasiun tertinggi dengan nilai yang sama. Kategori ikan target pada stasiun 1 mempunyai komposisi jenis ikan tertinggi yaitu ikan kecandang dengan nilai 8,73%. Stasiun 2 komposisi ikan tertinggi terdapat pada ikan kecandang dengan nilai 10,8%. Sedangkan pada stasiun 3 komposisi jenis berdasarkan kategori ikan target yaitu ikan bingkis dengan nilai sebesar 19,4%.

Berdasarkan tabel 2, komposisi jenis ikan tertinggi secara keseluruhan yang ditangap dengan sero terdapat pada jenis ikan *Siganus canaliculatus*. Nilai komposisi jenis ikan dari spesies siganus canaliculatus famili siganidae dengan nilai sebesar 13,07 % dan berjumlah 295 individu. Sedangkan komposisi jenis ikan rendah yaitu 0,27 % dan 6 individu. terdiri dari spesies Echeneis naucrates dari famili Echeneidae dan Carangoides malabaricus dari famili Carangidae.

Berdasarkan pada tabel 3 stasiun 1 nilai keanekaragaman sebesar 1,782. Berdasarkan nilai tersebut berarti keanekaragaman ikan di perairan pesisir pantai Secupak Kabupaten termasuk dalam Belitung ke kategori keanekaragaman sedang (H'< 1). Biota ikan di perairan sekitar pantai Secupak yang tertangkap dengan alat tangkap sero memiliki tingkat keanekaragaman sangat beragam bervariasi. Pada stasiun 2 nilai keanekaragaman 2,187 dengan kategori 3 sedana dan stasiun dengan nilai keanekaragaman 1,464 kategori sedang. rendahnya nilai indeks Tinggi

keanekaragaman tergantung pada perbedaan jumlah individu yang ditangkap untuk setiap jenis ikan.

Indeks keseragaman (E) pada alat tangkap sero di stasiun 1 yaitu dengan nilai 0,424. kategori rendah. Stasiun 2 nilai keseragaman yaitu 0,494 dengan kategori rendah dan pada stasiun 3 mempunyai nilai keseragaman adalah 0,205 dengan kategori rendah. Berdasarkan nilai tersebut berarti keseragaman ikan di perairan pantai Secupak termasuk ke dalam kategori rendah. Dengan demikian dapat disimpulkan bahwa populasi ikan tidak tersebar merata di seluruh stasiun. Mengenai komunitas, keanekaragaman spesies dapat dikatakan tinggi apabila jumlah spesiesnya banyak dan setiap spesies mempunyai jumlah individu yang relatif seragam (Jukri & Emiyati, 2013).

Jika suatu komunitas hanya terdiri dari beberapa spesies dengan jumlah individu yang tidak merata, maka komunitas tersebut yang memiliki keanekaragaman Menurut Sarisma et al. (2017) semakin kecil nilai keseragaman (E) maka semakin kecil pula keseragaman populasi yang berarti populasi tersebar dan jenisnya cenderung mendominansi populasi. Rendahnya nilai indeks keseragaman disebabkan karena adanya jumlah individu yang lebih banyak dibandingkan individu lainnya.

Nilai indeks dominansi (C) pada alat tangkap sero pada stasiun 1 dengan nilai sebesar 0,269 kategori rendah. Indeks dominansi pada stasiun 2 yaitu dengan nilai sebesar 0,169 kategori rendah dan nilai indeks dominansi stasiun 3 sebesar 0,364 kategori rendah. Hal ini menunjukkan bahwa nilai indeks dominansi termasuk ke dalam dominansi rendah di mana tidak terdapat spesies ikan yang dominan atau satu spesies ikan yang lebih banyak jumlahnya dibandingkan spesies lainnya. Dominansi berarti persaingan dalam pemanfaatan sumber daya atau adanya persaingan dan lingkungan perairan vang seimbang atau tertekan.

Berdasarkan pada tabel 4 status konservasi ikan hasil tangkapan berdasarkan data penangkapan ikan yang diperoleh dari lokasi penelitian, diketahui bahwa status konservasi dari 53 spesies ikan yaitu kategori IUCN Redlist secara keseluruhan berada pada status LC (Least Concern) atau risiko rendah, DD (Data Deficient) atau data kurang dan Tidak dievaluasi. Pada Status DD (Data Deficient) data atau kekurangan yang didapatkan yaitu spesies Megalops

Tabel 1. Komposisi Jenis Per Stasiun dan Komposisi Jenis Kategori Ikan Karang

No	Nama Ilmiah	Nama	Nama Lokal	Kateigori		osisi Jeinis (%)	
110	Ivaliia Illiliali	Nasional	IVAIIIA LOKAI	Rateigori	S1	S2	S3
1	Abuideifduif vaigieinsis	Padi-Padi	Kembuil		0	1,35	1,40
2	Neioglyphidodon bonang	Manukan Dasi	Iguk		6,55	2,70	1,71
3	Dischistoduis peirspicillatuis	Betok Susu	Iguk		0,87	0,68	0,78
4	Anampseis caeiruileiopuinctat uis	Keling Totol	Iguk		0	1,35	1,09
5	Halichoeireis arguis	Bayeman	Jejeli		2,18	2,03	1,55
6	Choeirodon anchorago	Kakapan	Kerekutak		3,49	1,62	1,01
7	Ostorhinchuis chrysopomuis	Seriding Totol	Seriding		6,55	2,70	2,02
8	Neictamia savayeinsis	Seriding	Seriding		4,37	2,70	1,55
9	Apogonichthyoidei s meilas	Seriding Pengka	Seriding Pengka		8,73	2,97	1,94
10	Scaruis ghobban	Kakatua Biru	Jampong		2,18	1,35	1,63
11	Arothron manileinsis	Buntal	Buntal		0,87	1,35	0,93
12	Platax boeirsii	Buna Perak	Bawal		0	0,68	0,39
13	Monodactyluis argeinteiuis	Gebal	Bawal		0	1,62	1,09
14	Sargoceintron ruibruim	Rengginan	Nenterang	Mayor	0	1,35	1,55
15	Geirreis eirythrouiruis	Kapas-Kapas	Mengkapas		5,24	2,70	7,76
16	, Paramoncanthuis japonicuis	Bembeg	Tunjang Langit		2,18	1,35	0,93
17	Platax orbicuilaris	Gebel Bundar	Ketaper		0	1,35	1,16
18	Scatophaguis arguis	Kiper	Kiper		0	1,49	1,09
19	Rastreilligeir kanaguirta	Kembung	Kembong		0	1,35	1,24
20	Eicheineiis nauicrateis	Gemi	Gemek	Indikator	0	0,14	0,39
21	Grammopliteis scabeir	Baji-Baji	Babaji		0	1,08	0,93
22	Strongyluira incisa	Julung-Julung Karang	Ucul		2,18	1,62	1,40
23	Ceintrogeinys vaigieinsis	Kalajengking Palsu	Kerapu Kera		0	0,54	0,93
24	Sardineilla albeilla	Tamban	Tamban		8,73	4,05	2,72
25	Atheirinomoruis duiodeicimalis	Lumbungan	Riyok		0	1,35	1,09
26	Cheilmon rostratuis	Kepe-Kepe Pita Tembaga	Tudong Kendi		0	0,68	0,78
27	Chaeitodon octofasciatuis	Kepe-Kepe Zebra	Tudong Kendi		3,49	0,68	0,78

Tabel 1. Komposisi Jenis Per Stasiun dan Komposisi Jenis Kategori Ikan Karang (lanjutan)

No	Nama Ilmiah	Nama	Nama Lokal	Kateigori		osisi Jein		
		Nasional		Raceigon	S1	S2	S3	
28	Brotuila muiltibarbata	Jenggot Kambing	Usat		1,75	0,95	1,01	
29	Luitjanuis fuilviflamma	Tanda	Ketande		2,18	1,08	1,09	
30	Luitjanuis carponotatuis	Kakap Ekor Kuning	Jarang Gigi		0	0,27	0,62	
31	Kyphosuis vaigieinsis	Lencam	Ilak Karang		0	1,62	1,09	
32	Kyphosuis cineirasceins	Elak	Ilak		0	4,05	4,35	
33	Uipeineiuis traguila	Dayah Jenggot	Paser	Targeit	0	1,89	1,32	
34	Peintapoduis bifasciatuis	Lenceng	Paser		0	1,08	0,78	
35	Leithrinuis leintjan	Tambak Pasir	Ketambak		0	1,08	0,78	
36	Scolopsis ciliata	Jangki Timun	Paser		0	2,03	1,16	
37	Seilar cruimeinophthalm uis	Selar Bentong	Kecandang		8,73	10,8	2,33	
38	Odonuis nigeir	Ayam-Ayam	Jebong Karang		0,44	0,27	0,78	
39	Carangoideis malabaricuis	Kuwe	Rintik		0	0,27	0,31	
40	Carangoideis dineima	Kuwe	Bulat		0	0,68	0,62	
41	Seilar boops	Jalu-Jalu	Bau-Bau		0	3,11	1,94	
42	Seilaroideis leiptoleipis	Selar kuning	Selar		4,37	2,70	2,41	
43	Diagramma pictuim	Gaji	Seminyak		0	2,43	1,16	
44	Taeiniuira iymma	Pari Bintik	Mingkik		0	1,35	1,09	
45	Siganuis virgatuis	Baronang Kalung	Kerekunyit		4,37	6,76	10,9	
46	Siganuis canalicuilatuis	Baronang Susu	Bingkis		6,55	4,05	19,4	
47	Siganuis guittatuis	Baronang Totol	Libam		0	2,03	0,93	
48	Sphyraeina obtuisata	Barakuda	Tudak		4,37	1,62	1,24	
49	Meigalops cyprinoideis	Bulan	Bulan		0	0,27	0,39	
50	Psammopeirca waigieinsis	Kakap Mata Kucing	Cubit		0	0,81	0,62	
51	Heimiramphuis far	Julung-Julung	Puput		4,37	2,70	1,86	
52	Loboteis suirinameinsis	Telessi	Apung		0	1,35	0,78	
53	Photopeictoralis binduis	Peperek	Pepetek		5,24	1,89	1,24	
	2			Total	100	100	100	

Tabel 2. Komposisi Jenis Ikan Secara Keseluruhan dari Stasiun 1- Stasiun 3

No	Nama Ilmiah	Nama Nasional	Nama Lokal	Jumlah	Komposisi Jenis (%)
1	Abudefduf vaigiensis	Padi-Padi	Kembuil	28	1,24
2	Neoglyphidodon bonang	Manukan Dasi	Iguk	57	2,53
3	Dischistodus perspicillatus	Betok Susu	Iguk	17	0,75
4	Anampses caeruleopunctatus	Keling Totol	Iguk	24	1,06
5	Halichoeres argus	Bayeman	Jejeli	40	1,77
6	Choerodon anchorago	Kakapan	Kerekutak	33	1,46
7	Ostorhinchus chrysopomus	Seriding Totol	Seriding	61	2,70
8	Nectamia savayensis	Seriding	Seriding	50	2,22
9	Apogonichthyoides melas	Seriding Pengka	Seriding Pengka	67	2,97
10	Scarus ghobban	Kakatua Biru	Jampong	36	1,60
11	Arothron manilensis	Buntal	Buntal	24	1,06
12	Platax boersii	Buna Perak	Bawal	10	0,44
13	Monodactylus argenteus	Gebal	Bawal	26	1,15
14	Sargocentron rubrum	Rengginan	Nenterang	30	1,33
15	Gerres erythrourus	Kapas-Kapas	Mengkapas	132	5,85
16	Paramoncanthus japonicus	Bembeg	Tunjang Langit	27	1,20
17	platax orbicularis	Gebel Bundar	Ketaper	25	1,11
18	Scatophagus argus	Kiper	Kiper	25	1,11
19	Rastrelliger kanagurta	Kembung	Kembong	26	1,15
20	Echeneis naucrates	Gemi	Gemek	6	0,27
21	Grammoplites scaber		Babaji	20	0,89
	•	Baji-Baji	_		•
22	Strongylura incisa	Julung-Julung Karang	Ucul	35	1,55
23	Centrogenys vaigiensis	Kalajengking Palsu	Kerapu Kera	16	0,71
24	Sardinella albella	Tamban	Tamban	85	3,77
25	Atherinomorus duodecimalis	Lumbungan	Riyok	24	1,06
26	Chelmon rostratus	Kepe-Kepe Pita Tembaga	Tudong Kendi	15	0,66
27	Chaetodon octofasciatus	Kepe-Kepe Zebra	Tudong Kendi	23	1,02
28	Brotula multibarbata	Jenggot Kambing	Usat	24	1,06
29	Lutjanus fulviflamma	Tanda	Ketande	27	1,20
30	Lutjanus carponotatus	Kakap Ekor Kuning	Jarang Gigi	10	0,44
31	Kyphosus vaigiensis	Lencam	Ilak Karang	26	1,15
32	Kyphosus cinerascens	Elak	Ilak	86	3,81
33	Upeneus tragula	Dayah Jenggot	Paser	31	1,37
34	Pentapodus bifasciatus	Lenceng	Paser	18	0,80
35	Lethrinus lentjan	Tambak Pasir	Ketambak	18	0,80
36	Scolopsis ciliatus	Jangki Timun	Paser	30	1,33
	Selar	_			•
37		Selar Bentong	Kecandang	130	5,76
38	crumenophthalmus odonus niger	Ayam-Ayam	Jebong Karang	13	0,58
39	Carangoides	Kuwe	Rintik	6	0,38
	malabaricus	Kuwe	MILLIK	0	0,27

Tabel 2. Komposisi Jenis Ikan Secara Keseluruhan dari Stasiun 1- Stasiun 3 (lanjutan)

No	Nama Ilmiah	Nama Nasional	Nama Lokal	Jumlah	Komposisi Jenis (%)
40	Carangoides dinema	Kuwe	Bulat	13	0,58
41	Selar boops	Jalu-Jalu	Bau-bau	48	2,13
42	Selaroides leptolepis	Selar Kuning	Selar	61	2,70
43	Diagramma pictum	Gaji	Seminyak	33	1,46
44	Taeniura iymma	Pari Bintik	Mingkik	24	1,06
45	Siganus virgatus	Baronang Kalung	Kerekunyit	200	8,86
46	Siganus canaliculatus	Baronang Susu	Bingkis	295	13,07
47	Siganus guttatus	Baronang Totol	Libam	27	1,20
48	Sphyraena obtusata	Barakuda	Tudak	38	1,68
49	Megalops cyprinoides	Bulan	Bulan	7	0,31
50	Psammoperca waigiensis	Kakap Mata Kucing	Cubit	14	0,62
51	Hemiramphus far	Julung-Julung	Puput	54	2,39
52	Lobotes surinamensis	Telessi	Apung	20	0,89
53	Photopectoralis bindus	Peperek	Pepetek	42	1,86
				2257	100

Tabel 3. Keanekaragaman Keseragaman dan Dominansi

			S	tasiuin		
Struiktuir Komuinitas	1		2		3	
	Nilai	Kateigori	Nilai	Kateigori	Nilai	Kateigori
Keianeikaragaman (H')	1,782	Seidang	2,187	Seidang	1,464	Seidang
Keiseiragaman (Ei)	0,424	Reindah	0,494	Reindah	0,205	Reindah
Dominansi (C)	0,269	Reindah	0,169	Reindah	0,364	Reindah

cyprinoides (Ikan bulan) dari famili Megalopidae dan Taeniura iymma (Ikan Mingkik) dari famili Dasyatidae. Kategori CITES seluruh jenis ikan berada pada status NE (Not evaluated) Tidak dievaluasi. Dan berdasarkan Permen KP No 1 Tahun 2021 seluruh jenis ikan pada status Tidak dievaluasi.

kelompok Spesies dengan Least Concern (LC) berarti ikan dengan kelompok ini masih melimpah di alam dan sebagian dikonsumsi. Dengan besar dilakukan penangkapan secara terus menerus dan dikonsumsi status konservasi dengan ini dapat berubah. kelompok Menurut Amanda et al. (2017) bahwa status perikanan LC dapat berubah menjadi berisiko tinggi jika jenis penangkapan dan konsumsi spesies ini terus berlanjut.

Jenis ikan yang tergolong *Not Evaluated* (NE) yang berarti ikan ini tidak dievaluasi. Status belum dievaluasi yang menyebabkan

jenis ikan terancam, tidak ada tindakan perlindungan atau konservasi yang diterapkan. Spesies ikan yang termasuk dalam kategori *Data Deficient* (Kekurangan Data) artinya kekurangan data mengenai ikan tersebut, mungkin disebabkan karena biologi dan perilaku spesies tersebut tidak dipahami dengan baik serta risiko kepunahannya tidak jelas.

lebih Penelitian lanjut diperlukan terhadap spesies ikan ini untuk mengetahui apakah spesies ini berisiko punah. Salah satu bentuk pengelolaan yang dapat dilakukan adalah dengan memberikan edukasi kepada nelayan dan masyarakat untuk meningkatkan kesadaran akan pentingnya keanekaragaman sumber daya alam dalam ekosistem dan membantu masyarakat mengetahui mana yang dilindungi dan mana yang tidak dilindungi, melindungi keanekaragaman hayati, menjamin keberlanjutan, pemanfaatan spesies dan ekosistemnya.

Tabel 4. Status Konservasi Ikan

	Nama		Status Konservasi			
No.	Lokal/Nasional	Nama Ilmiah	IUCN	CITES	PERMEN KP No 1 Thn 2021	
1	Kerekunyit	Siganus virgatus	LC	NE	TDL	
2	Bingkis	Siganus canaliculatus	LC	NE	TDL	
3	Mengkapas	Gerres erythrourus	LC	NE	TDL	
4	Ilak	Kyphosus cinerascens	LC	NE	TDL	
5	Tudong Kendi	Chelmon rostratus	LC	NE	TDL	
6	Tudong Kendi	Chaetodon octofasciatus	LC	NE	TDL	
7	Nenterang	Sargocentron rubrum	LC	NE	TDL	
8	Kecandang	Selar crumenophthalmus	LC	NE	TDL	
9	Seriding	Nectamia savayensis	LC	NE	TDL	
10	Jebong Karang	Odonus niger	LC	NE	TDL	
11	Kerapu Kera	Centrogenys vaigiensis	NE	NE	TDL	
12		Dischistodus perspicillatus	LC	NE	TDL	
13	Gemek	Echeneis naucrates	LC	NE	TDL	
14	Libam	Siganus guttatus	LC	NE	TDL	
15	Ketande	Lutjanus fulviflamma	LC	NE	TDL	
16	Jarang Gigi	Lutjanus carponotatus	LC	NE	TDL	
17	Bawal	Platax boersii	NE	NE	TDL	
18	Bulan	Megalops cyprinoides	DD	NE	TDL	
19	Buntal	Arothron manilensis	LC	NE	TDL	
20	Cubit	Psammoperca waigiensis	NE	NE	TDL	
21	Rintik	Carangoides malabaricus	LC	NE	TDL	
22	Tunjang Langit	Paramoncanthus japonicus	LC	NE	TDL	
23	Kembong	Rastrelliger kanagurta	LC	NE	TDL	
24	Ucul	Strongylura incisa	NE	NE	TDL	
25	Bulat	Carangoides dinema	LC	NE	TDL	
26	Usat	Brotula multibarbata	LC	NE	TDL	
27	Kiper	Scatophagus argus	LC	NE	TDL	
28	Tamban	Sardinella albella	LC	NE	TDL	
29	Ketaper	Platax orbicularis	LC	NE	TDL	
30	Bau-bau	Selar boops	LC	NE	TDL	
31	Riyok	Atherinomorus duodecimalis	LC	NE	TDL	
32	Selar	Selaroides leptolepis	LC	NE	TDL	
33	Bawal	Monodactylus argenteus	LC	NE	TDL	
34	Paser	Upeneus tragula	LC	NE	TDL	
35	Seriding Pengka	Apogonichthyoides melas	LC	NE	TDL	
36	Iguk	Neoglyphidodon bonang	LC	NE	TDL	
37	Tudak	Sphyraena obtusata	NE	NE	TDL	
38	Iguk	Anampses caeruleopunctatus	LC	NE	TDL	
39	Jejeli	Halichoeres argus	LC	NE	TDL	
40	Jampong	Scarus ghobban	LC	NE	TDL	
41	Kerekutak	Choerodon anchorago	LC	NE	TDL	
42	Paser	Scolopsis ciliata	LC	NE	TDL	
43	Puput	Hemiramphus far	NE	NE	TDL	
44	Kembuil	Abudefduf vaigiensis	LC	NE	TDL	
45	Babaji	Grammoplites scaber	LC	NE	TDL	
46	Seminyak	Diagramma pictum	NE	NE	TDL	

Tabel 4. Status Konservasi Ikan (lanjutan)

	Nama		Status Konservasi			
No.	lo. Nama Ilmiah Lokal/Nasional		IUCN	CITES	PERMEN KP No 1 Thn 2021	
47	Ilak Karang	Kyphosus vaigiensis	LC	NE	TDL	
48	Ketambak	Lethrinus lentjan	LC	NE	TDL	
49	Mingkik	Taeniura iymma	DD	NE	TDL	
50	Seriding	Ostorhinchus chrysopomus	LC	NE	TDL	
51	Apung	Lobotes surinamensis	LC	NE	TDL	
52	Paser	Pentapodus bifasciatus	LC	NE	TDL	
53	Pepetek	Photopectoralis bindus	NE	NE	TDL	

Keterangan : LC = Least Concern (Risiko rendah); DD = Data Deficient (Kekurangan data) NE = Not evaluated (Tidak Dievaluasi); TDL = Tidak Dilindungi

Tabel 5. Parameter Lingkungan

Na	Downwater		Stasiun		
No	Parameter	1	2	3	Baku Mutu
1	Suhu (°C)	29	30	32	28-32° C
2	Salinitas (‰)	27	28	29	30-34‰
4	Kecepatan Aruis (m/s)	0,41	0,58	0,52	-
4	Kedalaman (m)	1,5	2,16	3	>5
5	Kecerahan (%)	67,5	59,2	83,17	-

Berdasarkan hasil pengukuran pada stasiun pengamatan diperoleh nilai suhu berkisar antara 29°C - 32°C (tabel 5). Menurut baku mutu Peraturan Pemerintahan Republik Indonesia No. 22 (2021), yaitu suhu optimal bagi kelangsungan hidup biota laut adalah berkisar antara 28-32° C. salinitas yang telah diukur di stasiun pengamatan berkisar antara 27% - 29% yang berarti termasuk ke dalam kategori rendah. Rendahnya nilai salinitas di perairan pantai Secupak tersebut disebabkan oleh masuknya air tawar yang terbawa arus sungai ke air laut dan disebabkan curah hujan yang Menurut mutu Peraturan baku Pemerintahan Republik Indonesia No. 22 (2021) yaitu salinitas untuk air laut berkisar antara 30-34‰.

Berdasarkan Hasil pengukuran kecepatan arus di Stasiun 1 sebesar 0,41 m/s yang artinya kecepatan arus tergolong berarus sedang, Stasiun 2 sebesar 0,58 termasuk arus cepat dan stasiun 3 0,52 tergolong berarus cepat. Arus yang ada perairan Pantai Secupak merupakan arus pasang surut. Semakin cepat kecepatan angin, maka semakin besar gaya gesek yang bekerja pada permukaan laut, dan semakin besar pula laju alirannya (Hunta et al., 2018). Kecepatan arus sangat mempengaruhi jumlah hasil tangkapan, karena kecepatan arus akan

mempengaruhi keberadaan ikan di dalam air. Selain itu, angin juga dapat menjadi faktor yang mempengaruhi kecepatan arus laut.

Berdasarkan hasil pengukuran, kecerahan pada stasiun pengamatan berkisar 59,2 % - 83,17 %. Kecerahan antara perairan merupakan parameter perairan yang erat kaitannya dengan paparan sinar matahari, aktivitas fotosintesis dan produktivitas perairan (Mainassy, 2017). Nilai kedalaman yang telah di ukur di stasiun pengamatan berkisar antara 1,5 - 3 m. Menurut baku mutu Peraturan Pemerintahan Republik Indonesia No. 22 (2021) yaitu kedalaman > 5. Kedalaman adalah salah satu parameter lingkungan yang mempengaruhi kecerahan atau tingkat tingkat batas kemampuan sinar matahari mencapai suatu perairan (Budiyanti & Emu, 2021).

KESIMPULAN

Komposisi jenis ikan per stasiun yang tertinggi pada alat tangkap sero di stasiun 1 yaitu dengan nilai sebesar 8,73% terdiri dari spesies (*Selar crumenophthalmus* selar bentong), (*Sardinella albella* tamban) dan (*Apogonichthyoides melas* seriding), stasiun 2 dengan nilai 10,8% yaitui spesies (*Selar crumenophthalmus* selar bentong), dan stasiun 3 dengan nilai sebesar 19,4% yaitu spesies (*Siganus canaliculatus* baronang

lingkis). Sedangkan komposisi jenis ikan secara keseluruhan yang didapatkan pada alat tangkap seiro yaitu spesies siganus canaliculatus deingan nilai 13,07% dan 295 individui. Sedangkan komposisi jenis ikan terendah dengan nilai 0,27% dan 6 individu. terdiri spesies Echeneis naucrates Carangoides malabaricus.

Indeks keanekaragaman (H') berkisar antara 1,464-2,187 dikategorikan dengan keanekaragaman sedang. Nilai indeks keseragaman (E) dengan nilai berkisar antara 0,205-0,494 dikategorikan dengan keseragaman rendah. Indeks dominansi (C) yang didapatkan dari ketiga stasiun pada alat tangkap sero dengan nilai berkisar antara 0,169-0,364 dikategorikan dominansi rendah.

Ikan-ikan yang tertangkap dengan alat tangkap sero di Desa Tanjung Binga Kabupaten Belitung berdasarkan IUCN Redlist secara keseluruhan berada pada status LC (*Least Concern*), DD (*Data Deficient*) dan Tidak dievaluasi. Berdasarkan CITES seluruh jenis ikan berada pada status Tidak dievaluasi dan menurut Permen KP no 1 Tahun 2021 seluruh jenis ikan pada status Tidak dievaluasi.

REFERENSI

- Amanda DT, Pratomo A, Putra RD. 2017. Status Konservasi spesies Ikan Pari yang ditangkap nelayan pada Bulan Mei-Juli 2016 di Kabupaten Bintan Kepulauan Riau. *Jurnal Umrah*, 1-16.
- Anggraini LD, Rahmani U, Limbong M. 2021. Analisis pendapatan nelayan sero sebelum dan sesudah reklamasi di Kamal Muara, Jakarta Utara. *Jurnal Ilmiah Satya Minabahari*. 6(2): 90-98. doi: 10.53676/ jism.v6i2.152.
- Budiyanti, Emu S. 2021. Kandungan nutrisi rumput laut (*Eucheuma cottoni*) dengan metode rakit gantung pada kedalaman berbeda. *Aqua Marine*. 8(1): 27-33. doi: 10.55340/aqmj.v8i1.333.
- Fauzi M, Setyobudiandi I, Suman A. 2018. Biologi reproduksi Ikan Selar Bentong (Selar crumenophthalmus Bloch, 1793) di Perairan Natuna, Laut Cina Selatan. Bawal. 10(2): 121-133. doi: 10.15578/ bawal.10.2.2018.105-117.
- Hunta JCR, Sajjadib SG. 2018. Mechanisms and modelling of wind driven wave. *Procedia IUTAM*. 26:3-13. doi: 10.1016/j.piutam.2018.03.002.
- Jadesta. 2022. Jejaring Desa Wisata, Desa Tanjung Binga. Kementerian Pariwisata dan Ekonomi Kreatif.

- Jukri M, Emiyati KS. 2013. Keanekaragaman jenis ikan di Sungai Lamunde Kecamatan Watubangga Kolaka Provinsi Sulawesi Tenggara. *Jurnal Mitra Laut Indonesia*. 1(1): 12-25.
- Latuconsina H, Padang A, Ena AM. 2019. Iktiofauna di Padang Lamun Pulau Tatumbu Teluk Kotania, Seram Barat Maluku. *Jurnal Agribisnis Perikanan*. 12(1): 93-104. doi: 10.29239/j.agrikan. 12.1.93-104.
- Lutfiani L, Ghofar A, Purwati F. 2018. Komposisi jenis ikan hasil tangkapan sampingan (*Bycatch*) Pukat Dorong di Tambak Lorok, Semarang. *Maqures*. 7(3):228-297. doi: 10.14710/marj.v7i3. 22553.
- Madhavi R, Lakshmi TT. 2012. Community ecology of the metazon parasites of the indian mackerel rastrelliger kanagurta (scombridae) from The Coast Of Visakhapatnam, Bay Of Begal. *Journal Of Parasitic Diseases*. 36(2): 165-170. doi:10.1007/s12639-012-0097-0.
- Mainassy MC. 2017. Pengaruh parameter fisika dan kimia terhadap kehadiran Ikan Lompa (*Thryssa baelama Forsskal*) di Perairan Pantai Apui Kabupaten Maluku Tengah. *Jurnal Perikanan Universitas Gadjah Mada*. 19(2):61-66.
- Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 Tentang Penyelenggaraan Perlindungan Dan Pengelolaan Lingkungan Hidup.
- Sahidi S, Sapsuha GD, Laitupa AF, Tangke U. 2015. Hubungan faktor oseanografi dengan hasil tangkapan pelagis di Perairan Batang Dua Provinsi Maluku Utara. *Jurnal Agribisnis Perikanan*. 8(2): 53-63. doi: 10.29239/j.agrikan.8.2.53-63.
- Sarisma D, Ramli M, Ira. 2017. Hubungan kelimpahan ikan dengan kepadatan lamun di Perairan Pulau Hoga, Kecamatan Kaledupa, Kabupaten Wakatobi. *Sapa Laut*. 2(4): 103-112. doi: 10.33772/jsl. v2i4.3818.
- Sichum S, Tandichodok P, Jutagate T. 2013. Diversity & assemblage patterns of juvenil and small sized fishes in the nearshore habitats of The Gulf Of Thailand. *The Raffles Bulletin of Zoology*. 61(2):795-809. doi: 10.5281/zenodo.53 53060.
- Sudirman. 2013. Mengenal alat dan metode penangkapan ikan. Jakarta: Rineka Cipta.
- Sugiyono. 2017. Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.

- Sukmono T, Solihin DD, Rahadjo MF. 2013. Iktiofauna di Perairan Hutan Tropis Daratan Rendah, Hutan Harapan Jambi. *Jurnal Ikhtiologi Indonesia*. 13 (2):161-174. doi:10.32491/jii.v13i2.103.
- Surachmat A, Rafat Y, Imran A. 2017. Identifikasi ikan hasil tangkapan pada alat tangkap sero di Pesisir Kelurahan Waetuo dan Kelurahan Pallete,
- Kabupaten Bone. *Prosiding Seminar Nasional KSP2K II*. 1(2): 16-22.
- Yunita V, Zainuri M. 2021. Pengaruh pasang terhadap komposisi hasil tangkapan sero di Perairan Dakiring, Kecamatan Socah, Kabupaten Bangkalan, Jawa Timur. *Juvenil*. 2(3):236-242. doi: 10.21107/juvenil.v2i3.11272.