

Penaksiran Endapan Timah Primer Menggunakan Metode Resistivitas dan Metode Geomagnetik Di Bukit Sambunggiri Kecamatan Merawang Kabupaten Bangka

(Estimating Primary Tin Deposits Using Resistivity Method and Geomagnetic Method in Sambunggiri Hill Merawang District, Bangka Regency)

Mardiah ¹, Guskarnali ¹ Jurusan Teknik Pertambangan, Universitas Bangka Belitung

Abstract

Cassitterit is a valuable mineral containing tin and other minerals as mining products in the Bangka Belitung Islands region. Sambung giri Hill, Merawang District, Bangka Regency is one of the places where primary tin deposits occur. Estimation of subsurface images can be interpreted using geophysical methods in the form of resistivity methods and geomagnetic methods. The measurement of resistivity method uses 6 lines with dipole-dipole configuration while the geomagnetic method with looping measurement technique as many as 13 lines with each line consists of several measurement points within 20 meters, consisting of 10 lines to the South-North direction, and 3 trajectories to the West- East. Based on the results of the study, the primary tin deposit estimation from the resistivity method in the form of a cross section of resistivity shows a low resistivity value (<700 Ohm.m) while the geomagentic method in the form of Reduction To Equator (RTE) shows a low geomagnetic anomaly (<0.8 nT). The spread of primary tin deposits is estimated to be found in the Northwest-Southeast direction.

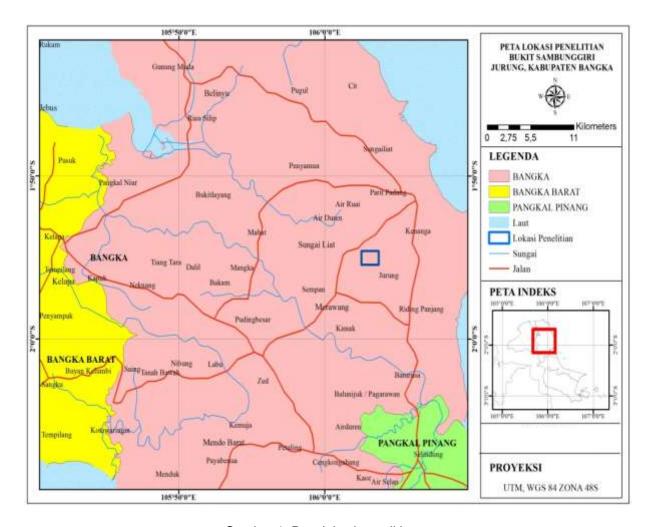
Keywords: Tin primer, geomagnetic, resistivity, direction

1. Pendahuluan

Metode Geolistrik digunakan sebagai pendugaan zona mineralisasi salah satunya menggunakan metode Induksi Polarisasi (IP) konfigurasi dipole-dipole dalam mengetahui sebaran dan potensi kedalaman dari mineral cassiterite di bawah permukaan pada Bukit Sambunggiri. Analisis survei detail terkait penyebaran potensi mineral endapan cassiterite dengan parameter anomali nilai resistivitas dan nilai chargeabilitas.

Berdasarkan latar belakang tersebut, maka diperoleh 3 (tiga) rumusan masalah yang akan dibahas pada penelitian ini yaitu bagaimana menentukan lokasi lintasan pengukuran geolistrik Metode Induksi Polarisasi (IP) dan pengolahan data menggunakan *Software* yang berbasis eksplorasi untuk menampilkan penampang bawah permukaan secara 2D dan 3D serta interpretasi penyebaran mineralisasi hasil pengolahan data lapangan.

*Korespodensi Penulis: (Mardiah) Jurusan Teknik Pertambangan, Fakultas Teknik, Universitas Bangka Belitung.


E-mail: mardiah_geo@yahoo.co.id

No Hp: 081328212963

Sedangkan penelitian ini bertujuan untuk mengetahui lintasan berdasarkan titik koordinat lintasan untuk mendapatkan hasil tiap penyebaran resistivitas dan dari nilai kemudian chargeabilitas mineral yang diinterpretasikan secara 3D untuk pendugaan penyebaran mineralisasi mineral.

Lokasi Penelitian

Lokasi penelitian ini terletak pada wilayah Bukit Sambunggiri, Kabupaten Bangka dengan jarak tempuh ± 20 Km dari Kota Pangkalpinang ke arah Selatan dan ± 10 Km dari Kota Sungailiat ke arah Timur Laut. Lokasi penelitian dapat ditempuh melalui jalur darat menggunakan kendaraan roda dua atau roda empat dari Pusat Kota Pangkalpinang dapat ditempuh ± 20 - 30 menit dan dari Kota Sungailiat ± 15 menit, sedangan jalan masuk menuju lokasi dalam keadaan kurang baik karena kondisi jalan yang memotong hutan dengan jalanan berpasir dan bercampur dengan batuan serta tanah liat. Adapun peta lokasi penelitian Tugas Akhir dapat dilihat pada Gambar 1.

Gambar 1. Peta lokasi penelitian

Tinjauan Pustaka

Menurut Mangga dan Djamal (1994), terdapat enam formasi utama yang terdapat pada peta geologi bangka utara yaitu kompleks pemali, diabas penyabung, granit klabat, formasi tanjunggenting, formasi ranggam dan formasi aluvium yaitu Kompleks Pemali (CPp), Diabas Penyabung (PT_RD), Granit Klabat (T_RJkg), Formasi Tanjunggenting (T_Rt), Formasi Ranggam (TQr), dan Formasi Aluvium (Qa).

Menurut Bemmelen (1970), Pulau Bangka adalah salah satu pulau di Paparan Sunda dan merupakan pulau terbesar dari kelompok tersebut. Pulau Bangka berbentuk peneplain yaitu merupakan dataran yang hampir rata atau bergelombang rendah karena lapisan - lapisan batuan yang ada terkikis, sedangkan bukit – bukit yang terdiri dari batuan yang tahan terhadap kelapukan dan terdapat secara terpisah – pisah atau terpencil.

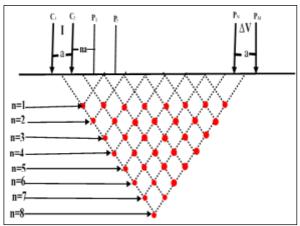
Menurut Sujitno (2007), deposit timah dalam cara pembentukannya terbagi atas dua golongan yaitu timah primer dan timah sekunder. Timah primer biasanya terdapat pada endapan Greisen, yang didefinisikan agregat granoblastik dari

kuarsa dan muskovit dengan sejumlah mineral asesori seperti topas, turmalin dan florit yang dibentuk oleh ubahan metasomatik post magmatik granit.

Metode Resistivitas

Menurut Grandis (2009),resistivitas merupakan kemampuan suatu medium untuk melawan arus listrik, dimana nilainya tidak bergantung kepada ukuran atau geometri mediumnya. Medium dengan resistivitas rendah kemampuan yang baik mengalirkan arus listrik dan sebaliknya kemudian nilai resistivitas ini akan berkaitan parameter geologi batuan, seperti kandungan mineral dan cairan, porositas dan derajat saturasi air di dalam batuan.

Menurut Telford dkk (1990), pengukuran pada metode ini dilaksanakan dengan melakukan injeksi arus kebawah permukaan melalui dua buah elektroda dan akan menghasilkan beda potensial yang terukur pada dua buah elektroda potensial dengan asumsi


medium dibawah permukaan merupakan medium yang homogen isotrop (material penyusun di suatu area sejenis atau sama).

Tabel 1. Nilai resistivitas material (Telford dkk, 1990)

,					
Material	Resistivitas	Material	Resistivitas		
	(Ohm.m)		(Ohm.m)		
Granite Porfir	4.5-10 ³ -1.3 x 10 ⁶	Konglomerat	$2 \times 10^2 - 5 \times 10^3$		
Feldspar Porfiri	4 x 103 (basah)	Limestone	50-10 ⁷		
Syenit	$10^2 - 10^6$	Magnetit	5 x 10 ⁻³ - 5.7 x 10 ³		
Dasit	2 x 10 ⁶	Hematit	3.5 x10 ⁻³ - 10 ⁷		
Andesit	4.5 x 10 ⁶ (basah)	Kasiterit	4 x 10 ⁻⁴ – 10 ⁴		
Lava	$10^2 - 5 \times 10^4$	Illmenit	10 ⁻³ - 50		
Sekis	20-10 ⁴	Kuarsa	4 x 10 ⁻³ – 2 x 10 ¹²		
Batupasir	1-6.4 x 10 ³	Galena	$3 \times 10^{-3} - 3 \times 10^{7}$		
Dolomite	$3.5 \times 10^3 - 5 \times 10^3$	Pirit	2,9 x 10 ⁻³ -0,5		

Konfigurasi Dipole - Dipole

Menurut Loke (1996),pengukuran dengan konfigurasi ini dilakukan dengan cara menageser elektroda dengan hasil pengukuran vertikal dengan penggunaan empat elektroda dengan dua buah elektroda arus (C1 dan C2) dan dua buah elektroda potensial (P1 dan P2). Jarak antara kedua elektroda arus adalah a meter, sedangkan jarak antara kedua elektroda potensial juga adalah a meter, namun diletakan diluar elektroda arus. Serta n meter merupakan jarak elektroda arus dan elektroda potensial pada bagian dalam (C2 dan P1). Nilai n merupakan faktor bilangan bulat dan perulangan (n= 1,2,3....). Semakin besar nilai n nya maka penetrasi kedalamannya akan semakin besar juga. Posisi titik ukur konfiguran dipole - dipole dapat dilihat pada Gambar 3.

Gambar 3. Posisi Titik Ukur Konfigurasi Dipole-Dipole (Loke, 1996)

Pseudosection

Menurut Loke (1996), *Pseudosection* atau penampang 2D merupakan penampang untuk menggambarkan hasil survei secara 2D

dengan metode conturing pseudosection dengan gambaran gambaran tentang distribusi nilai-nilai hasil pengukuran di lapangan. Dalam hal ini posisi plotting point adalah titik tengah horizontal yang ditempatkan pada titik tengah-tengah dalam susunan elektroda pengukuran, sedangkan titik vertikal ditempatkan pada jarak proporsional ditengah-tengah dalam susunan elektroda pengukuran pada arah vertikal kemudian digunakan dalam konfigurasi dipoledipole untuk menunjukkan penetrasi kedalaman dengan asumsi tidak ada pengaruh topografi dan medium homogen. Rumusan hasil dari asumsi penetrasi tiap-tiap kedalaman untuk konfigurasi dipole-dipole dimulai dari n = 1 sampai n = 8 dengan mempertimbangkan berbagai macam faktor dan toleransi kesalahan.

Metode Geomagnet

Menurut Santoso (2002), metode geofisika menggunakan pengukuran fisis pada permukaan bumi, dari sisi lain geofisika mempelajari semua isi bumi baik yang terlihat maupun tidak terlihat langsung oleh pengukuran sifat fisis dengan penyesuaian pada umumnya dipermukaan. Menurut Stern et al. (2004), survei dengan metode magnetik yang menjadi target dari pengukuran adalah variasi medan magnetik yang dipermukaan (anomali terukur magnetik). Anomali medan magnetik disebabkan oleh medan magnetik remanen dan medan magnetik induksi.

Intensitas Kemagnetan, Suseptibilitas dan Medan Magnet

Menurut Santoso (2002), suatu benda magnet yang terletak di dalam medan magnet luar menjadi termagnetisasi karena induksi. Intensitas magnetisasi itu berbanding lurus dengan kuat medan dan arahnya searah dengan medan tersebut. Harga suseptibilitas pada batuan semakin besar apabila dalam batuan tersebut semakin banyak dijumpai banyak mineral-mineral yang bersifat magnetik.

Menurut Telford et al. (1979), param yang menggambarkan arah medan magnetik adalah deklinasi (D) (sudut antara utara magnetik dan utara geografis) dan inklinasi (I) (sudut antara bidang horizontal dan vektor medan total), yang diukur dalam derajat. Adanya anomali medan magnetik menyebabkan perubahan dalam medan magnet total bumi dan dapat dituliskan sebagai anomali magnetik totalnya dengan Persamaan 1 dan 2 sebagai berikut.

$$\Delta T = H_T - H_M....(1)$$

$$atau$$

$$\Delta T = T_{obs} - T_{IGRF} - \pm T_{VN}...(2)$$

Metode Pengukuran Data Geomagnetik

Menurut Winda dkk. (2013), peralatan paling utama yang digunakan dalam pengukuran geomagnetik adalah *Proton Precission Magnetom* (PPM) yang digunakan untuk mengukur nilai kuat medan magnetik total. Data yang dicatat selama proses pengukuran adalah hari, tanggal, waktu, kuat medan magnetik, kondisi cuaca dan lingkungan.

Pengolahan Data Geomagnetik

Menurut Winda dkk. (2013), untuk memperoleh nilai anomali medan magnetik yang diinginkan, maka dilakukan koreksi terhadap data medan magnetik total hasil pengukuran pada setiap titik lokasi atau *station* pengukuran, yang mencakup koreksi harian, IGRF dan efek regional sampai ke interpretasi data. Adapun tahapan pengolahan data sebagai berikut:

1. Koreksi Harian

Koreksi harian (diurnal correction) merupakan penyimpangan nilai medan magnetik bumi akibat adanya perbedaan waktu dan efek radiasi matahari dalam satu hari.

$$H_A = H_T \pm H_L$$
....(3)

2. Koreksi IGRF

Data hasil pengukuran medan magnetik pada dasarnya adalah konstribusi dari tiga komponen dasar, yaitu medan magnetik utama bumi, medan magnetik luar dan medan anomali.

$$H_A = H_T - H_m \pm HL....(4)$$

3. Reduksi ke Ekuator

Menurut Blakely (1995), anomali magnetik yang dihasilkan masih dipengaruhi oleh arah inklinasi medan bumi pada daerah penelitian sehingga maksimum profil anomali tidak berhubungan langsung dengan posisi sumber benda penyebab anomali.

2. Metode Penelitian

Metode penelitian yang digunakan adalah melakukan penentuan lintasan berdasarkan titik ukur tiap lintasan kemudian pengambilan data menggunakan alat geolistrik Supersting Multi Channel RS/IP konfigurasi dipole - dipole dengan pengukuran sebanyak 6 lintasan dengan panjang tiap lintasan 630 meter. Hasil pengukuran menggunakan alat geolistrik kemudian diolah menggunakan software berbasis eksplorasi untuk pembuatan penampang resitivitas dan chargeabilitas 2D dengan data koordinat x,y,z yang diolah lanjut untuk melihat kedalaman dan pembuatas

sayatan keseluruhan lintasan penelitian yang kemudian di interpretasi untuk menentukan anomali yang ada pada tiap lintasan sehingga didapat kesimpulan berupa peta sebaran mineral berdasarkan nilai resistivitas dan chargeabilitas.

Tahapan Penelitian

Metode penelitian ini menggunakan metode deskriptif yang dilakukan melalui beberapa tahapan yang meliputi studi literatur penelitian terdahulu, observasi lapangan, pengumpulan dan pengelompokkan data, pengolahan data lapangan, analisis data, serta penyusunan laporan. Tahapan studi literatur dilakukan dengan mengumpulkan bahan-bahan pustaka terdahulu.

3. Hasil dan Pembahasan

kali hasil Pada penelitian ini pembahasan menggunakan metode induksi polarisasi dengan konfigurasi dipole-dipole dengan pengukuran lintasan terlebih dahulu untuk menentukan titik dana area peneitian. Selanjutnya dilakukan pengukuran geolistrik dan akuisisi data pengolahan dengan Software berbasis eksplorasi untuk penampang 2D dan 3D sehingga didapat interpretasi data potensi sebaran mineralisasi endapan timah pada daerah penelitian.

Gambar 4. Kenampakan Lokasi Penelitian

Pengukuran Lintasan Geolistrik

Lintasan pengukuran geolistrik dibuat sebanyak 6 lintasan dengan jarak antar lintasan sejauh 50 meter dan panjang lintasan terdiri dari 640 meter untuk panjang lintasan A, B, C dan 840 meter untuk panjang lintasan D, E, F dengan spasi elektroda 10 meter. Adapun hasil pengukuran lintasan pada lokasi penelitian dapat dilihat pada Tabel 4.

Tabel 4. Data hasil pengukuran lintasan

Lintasan	Kedalaman penetrasi (meter)	Panjang lintasan (meter)	Koordinat awal		Koordinat akhir	
			Х	Y	Χ	Υ
Α	130 meter	640 meter	619848,2	9784754	620272	9785193
В	130 meter	640 meter	619938,4	9784707	620366,2	9785156
С	130 meter	640 meter	620000,2	9784627	620423,7	9785072
D	160 meter	840 meter	620074,9	9784555	620606,7	9785126
Е	160 meter	840 meter	620135,8	9784482	620692,6	9785066
F	160 meter	840 meter	620229,3	9784409	620765,8	9784999

Pada Tabel 4 diatas, nilai koordinat pada seluruh lintasan A, B, C, D, E dan F telah ditentukan, maka peneliti bisa mengaplikasikan menggunakan perangkat lunak dengan membuat peta seluruh lintasan yang akan diukur nantinya menggunakan alat geolistrik. Nilai koordinat diambil dengan spasi 10 meter antar lintasan, untuk lintasan A, B. C yaitu 64 titik nilai koordinat dan untuk lintasan D, E, F yaitu 84 titik nilai koordinat.

Data Pengolahan Metode Induksi Polarisasi

Pada metode induksi polarisasi terinduksi, data lapangan berupa nilai resistivitas dan chargeabilitas. Data ini akan diolah dengan menggunakan *inversi* dan *forward modelling* pada *software* yang berbasis eksplorasi. Hasil dari pengolahan ini didapatkan nilai resistivitas (jenis batuan, zona alterasi, kontak antar litologi) dan chargebilitas (kandungan mineral logam pada batuan) yang sebenarnya dalam bentuk penampang 2D beserta topografi dalam masingmasing lintasan pengukuran dengan elevasi tertinggi sekitar 80 mdpl.

pernah Berdasarkan penelitian yang dilakukan untuk mencari endapan timah primer Sa'ban (2017) menjelaskan bahwa keberadaan endapan mineral timah diindikasi dengan nilai resistivitas rendah dan chargeabilitas yang tinggi. Hasil penampang 2D dari hasil inversi kemudian divisualisasi dalam bentuk 2D dan dilihat korelasi kemenerusan zona mineralisasi antara tiap lintasan dalam bentuk 3D dengan menggunakan software berbasis eksplorasi. Nilai resistivitas pada penelitian ini sebesar 0 – 4000 Ohm.m dan chargeabilitas berkisar dari 0 - 200 ms. Untuk mengetahui nilai resistivitas dan chargeabilitas dapat dilihat pada Tabel 5 berikut ini.

Tabel 5. Klasifikasi nilai resistivitas dan Chargeabilitas

	=	
Skala	Resistivitas (Ohm.m)	Chargeability (msec)
Rendah	< 700	<1
Sedang	700-1800	1-30
Tinggi	>1800	>30

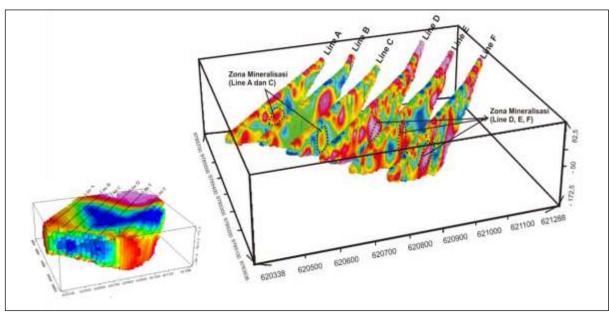
Mengacu pada informasi geologi serta data yang mendukung, dilakukan interpretasi lebih lanjut terhadap pembagian kelompok nilai resistivitas dan chargeabilitas tersebut dapat dijadikan korelasi acuan untuk interpretasi peta penampang yang diolah dengan *Software* berbasis eksplorasi (Tabel 6).

Tabel 6. Korelasi hasil interpretasi dengan nilai resistivitas dan chargeabilitas

Resistivitas (Ohm.m)	Chargeability (msec)	Hasil Interpretasi
Rendah-Sedang	Rendah	Batulempung
Tinggi	Rendah-Sedang	Bog Iron
Tinggi	Tinggi	Batuan Metasedimen / Intrusi Granit
Rendah-Sedang	Tinggi	Zona Mineralisasi

Dari hasil pengolahan yang sudah dilakukan didapat bahwa dari total 6 lintasan pengukuran, hanya terdapat 3 lintasan yang memiliki dugaan daerah mineralisasi yaitu :

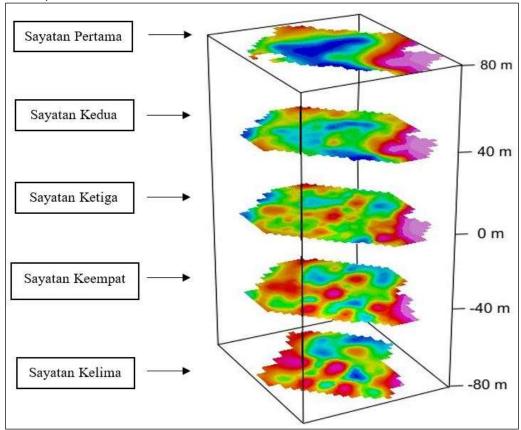
Lintasan A


Pada lintasan A terdapat variasi dari nilai chargeabilitas dan nilai resistivitas mulai dari nilai terendahnya yang berwarna biru hingga yang paling tinggi berwarna merah muda.

Berdasarkan analisis dapat diketahui bahwa zona mineralisasi diduga terletak dibawah zona bog iron dengan endapan timah sekunder yang merupakan batuan keras seperti granit yang mengalami oksidasi, sehingga mineral memiliki tingkat resistensi tinggi terhadap pelapukan seperti kasiterit dan kuarsa akan terlepas dari tubuh batuan dan terendapkan di lapisan bawah.

Pendugaan Sebaran Mineralisasi Timah

Dari hasil pemodelan baik untuk nilai resistivitas dan chargeabilitas menunjukkan adanya kemenerusan zona mineralisasi disetiap lintasan yang ditunjukkan dengan nilai resistivitas sedang dan nilai chargeabilitas tinggi.


Interpretasi hasil pengolahan metode induksi polarisasi dilakukan pemodelan 3D dari nilai resistivitas dan chargeability dari setiap lintasan. Hal ini bertujuan untuk melihat kemenerusan zona mineralisasi pada setiap lintasan yang ditandai dengan garis hitam pada lintasan gabungan. Pemodelan diakukan dengan menggunakan software berbasis eksplorasi baik pemodelan seluruh lintasan nilai resistivitas. Nilai chargeabilitas pada seluruh lintasan berpacu pada nilai resistivitas yang rendah-sedang yang dimana pada daerah tersebut memiliki nilai chargeabilitas sedang-tinggi yang diduga zona kemenerusan mineralisasi kasiterit (Gambar 9).

Gambar 9. Interpretasi nilai chargeabilitas

Berdasarkan hasil dari interpretasi peta chargeabilitas sedang dan tinggi, diduga adanya zona anomali mineralisasi yang tersebar dari bagian barat daya sampai ketengah lintasan sedangkan hasil analisis penampang tiap lintasan yang menggunakan metode induksi polarisasi dapat diindikasikan bahwa zona

mineralisasi kasiterit tersebar diseluruh lintasan pengukuran tepat di daerah barat daya menuju ke tengah lintasan dengan panjang dan kedalaman yang bervariasi pada setiap lintasan yang ditandai garis hitam pada setiap lintasan.

Gambar 12. Sayatan dan gabungan nilai chargeabilitas

Berdasarkan interpretasi sayatan diatas, bahwa pendugaan zona mineralisasi menggunakan korelasi nilai resistivitas bernilai tinggi dan nilai chargeabilitas juga tinggi seperti intrusi granit yang mengindikasikan daerah barat daya sampai ketengah lintasan dengan kedalaman mulai dari 0 meter dari permukaan sampai kebawah permukaan (80 meter) diduga adanya zona mineralisasi. Untuk pendugaan mineralisasi beserta penyebarannya dapat dilihat pada penjabaran berikut ini :

Lintasan A

Berada pada jarak 250 – 350 meter dan kedalaman berkisar 0 – 50 meter di bawah permukaan. Zona ini ditandai dengan nilai chargeabilitas sedang - tinggi (9 – 30 msec) dan resistivitas rendah (< 700 Ohm.m).

4. Kesimpulan

Proses akuisisi pada daerah penelitian menentukan lintasan pengukuran sebanyak enam lintasan, yang dimana lintasan A, B, C dengan panjang 640 meter dan lintasan D, E, F dengan panjang lintasan mencapai 840 meter. Hasil interpretasi seluruh penampang resistivitas dan chargeabilitas diduga lintasan adanya zona mineralisasi timah dengan endapan sekunder yang diakibatkan bahwasannya bog iron ini merupakan batuan keras seperti granit yang mengalami oksidasi, sehingga mineral yang memiliki tingkat resistensi tinggi terhadap pelapukan seperti kasiterit dan kuarsa akan terlepas dari tubuh batuan dan terendapkan dilapisan bawah, sedangkan pada lintasan lain diduga adanya kemenerusan zona mineralisasi timah dengan endapan primer karena letak daerah mineralisasinya menyebar diantara intrusi batuan granit yang memiliki nilai chargeabilitas dan resistivitas yang tinggi.

Daftar Pustaka

- Bemmelen, V.R.W., 1970, *The Geology of Indonesia*, General Geology Volume I A. Martinus Nighoff, The Hague, Netherland.
- Grandis, H., 2009, *Pengantar Pemodelan Inversi Geofisika*, Bandung, Himpunan Ahli Geofisika Indonesia (HAGI).
- Hartosuwarno, S., 2011, *Endapan Mineral*, Jurusan Teknik Geologi Fakultas Teknologi Mineral, Universitas Pembangunan Nasional, Yogyakarta.
- Loke, M.H., 1999, Electrical Imaging Surveys For Environmental And Engineering Studies, Malaysia, Penang.
- Loke, M.H, and Barker, R.D., 1996, Least-Squares Deconvolution of Apparent Resistivity Pseudosection, Journal Society of

- Explorations Geophysicsts, Geophysics Vol. 60 No.6, P. 1682-1690.
- Mangga, S, dan Djamal,B., 1994, *Peta Geologi Lembar Bangka Utara, Pusat Penelitian Pengembangan Geolog*, Bandung.
- Reynold, J.M., 1997, An Introduction to Applied and Environmental Geophysics, John Wiley & Sons Ltd, Chichester, England.
- Sa'ban, M., 2017, Identifikasi Persebaran Zona Mineralisasi Timah Menggunakan Metode Magnetik dan Polarisasi Terinduksi di Desa Paku Kecamatan Payung Kabupaten Bangka Selatan, Jurusan Geofisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada, Yogyakarta.
- Sujitno, S., 2007, Sejarah Penambangan Timah Timah Di Indonesia. Jakarta.
- Telford, W.M, Geldart, L.P., and Sheriff, R.E., 1990, Applied Geophysics Second Edittion, Cambridge University Press, New York.