COMPARATIVE STUDY OF CHILLI PRICE PROJECTIONS IN SUMATERA VS JAVA ISLAND

STUDI KOMPARASI PROYEKSI HARGA CABAI RAWIT DI PULAU SUMATERA VS PULAU JAWA

  • Muhammad Faisal Akbar Universitas Bangka Belitung

Abstract

The agricultural sector is a sector that plays an important role in the national economy. Indonesia has determined several potential superior commodities based on economic value and high market demand. Several horticultural commodities that have been designated as leading commodities by Indonesia are various chilies, shallots and oranges. This study intends to conduct a study on the projection (forecasting) of cayenne pepper prices on the island of Sumatra and Java island using a time-series analysis approach. Time-series data has advantages in terms of analysis and projection so that researchers can provide an overview of the price behavior of cayenne pepper in the market. The method used in analyzing projections is using Trend Analysis (Linear), Moving Average, and Polynomial methods. The final results from the Trend Analysis (Linear), Moving Average, and Polynomial methods, which have superior results if you look at the results of R Squared, are Java. Descriptive analysis results seen from the average (mean), standard deviation, drinking value and maximum, which is superior is the island of Sumatra.

Keywords: Forecasting, Prices, Chili, Sumatra, Java

Downloads

Download data is not yet available.

References

DAFTAR PUSTAKA

Adiyono, S., & Novianto, S. (2022). Prediksi Komoditas Pangan Pada Masa Pandemi Dengan Metode Forecasting dan Moving Average. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(3), 155–163. https://doi.org/10.25077/teknosi.v7i3.2021.155-163

Akbar, M. F., & Fahria, I. (2022). Study on Identification and Projection of Food Commodity Price Cycles during the COVID-19 Pandemic Period as a Study of Supervision Aspects of Food Product Marketing in Bangka Belitung. Society, 10(1), 45–64. https://doi.org/10.33019/society.v10i1.322

Andi. (2014). Analisis Kelayakan Usaha Tani Padi Monokultur Tadah Hujan Pada Lahan Berkemiringan Tinggi Di Desa Pucungkerep Kecamatan Kaliwiro Kabupaten Wonosobo

Ariefianto, Moch. Doddy. (2012). Ekonometrika esensi dan aplikasi dengan menggunakan EViews. Jakarta: ERLANGGA.

Ariwanda, G., & Cholissodin, I. (2019). Prediksi Harga Cabai Rawit di Kota Malang Menggunakan Algoritme Extreme Learning Machine (ELM) (Vol. 3, Issue 6). http://j-ptiik.ub.ac.id

Darma Jaya, J., Teknologi Industri Pertanian, J., Negeri Tanah Laut, P., Yani, J. A., Panggung, D., Pelaihari, K., Tanah Laut, K., & Selatan, K. (2019). Peramalan Jumlah Populasi Sapi Potong di Kalimantan Selatan Menggunakan Metode Moving Average, Exponential Smoothing dan Trend Analysis Forecasting of Beef Cattle Population Using Moving Average, Exponential Smoothing and Trend Analysis Methods.

Debora Br Barus, M., Soufika Thahirah Prodi Akuntansi, F., & Sosial Sains, F. (n.d.). NUSANTARA: Jurnal Ilmu Pengetahuan Sosial ANALISIS TREND PRODUKSI DAN HARGA KOMODITAS CABAI UNTUK MENINGKATKAN PRODUKTIVITAS DESA LAU GUMBA KABUPATEN KARO 1. https://doi.org/10.31604/jips.v9i2.2022.527-531

Furlong F, Ingenito R. (1996). Commodity price and inflation. FRBSF Econ Rev. 2:27-47.

Fajar M. (2020) PERAMALAN HARGA CABAI DENGAN MENGGUNAKAN TBATS. https://doi.org/10.13140/RG.2.2.19145.49760

Fatihah A. (2020) PERAMALAN PRODUKSI CABAI MERAH KERITING MENGGUNAKAN METODE CAUSAL FORECASTING (Studi Kasus pada Pasar Lelang Cabai Sleman).

Ghozali. (2016). Aplikasi Analisis Multivariete Dengan Program IBM SPSS. Semarang: Badan Penerbit Universitas Diponegoro.

Herjanto, Eddy. (2007). Manajemen Operasi. Graindo

Hadiansyah, F. N. (n.d.). Prediksi Harga Cabai dengan Pemodelan Time Series ARIMA. https://doi.org/10.21108/indojc.2017.21.144

Joëts M, Mignon V, Razafindrabe T. (2017). Does the volatility of commodity prices reflect macro-economic uncertainty Energy Econ[Internet]

Lubis, R. M. F., Situmorang, Z., & Rosnelly, R. (2021). Autoregressive Integrated Moving Average (ARIMA-Box Jenkins) Pada Peramalan Komoditas Cabai Merah di Indonesia. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(2), 485. https://doi.org/10.30865/mib.v5i2.2927

Malensang, J. S., Komalig, H., & Hatidja, D. (n.d.). PENGEMBANGAN MODEL REGRESI POLINOMIAL BERGANDA PADA KASUS DATA PEMASARAN DEVELOPMENT OF MULTIPOLYNOMIAL REGRESSION MODEL ON MARKETING DATA CASE.

Maula, L. R., Surya, T., & Rianti, M. (2021). Media Agribisnis Fluktuasi dan Peramalan Harga Cabai Rawit di Kabupaten Malang ARTICLE LICENCE. https://doi.org/10.35326/agribisnis.v5i1.1179

Miftahuddin, L., Ekowati, T., & Setiawan, B. M. (2020). ANALISIS PERMINTAAN CABAI RAWIT MERAH (Capsicum frutescens) DI KABUPATEN SEMARANG. SOCA: Jurnal Sosial, Ekonomi Pertanian, 14(1), 66. https://doi.org/10.24843/soca.2020.v14.i01.p06

Palar, N., Pangemanan, P. A., & Tangkere, E. G. (2016). FAKTOR-FAKTOR YANG MEMPENGARUHI HARGA CABAI RAWIT DI KOTA MANADO (Vol. 12).

Purnama, Y., Affendi, F. M., & Soleh, A. M. (2021). Pemodelan Pola Produktivitas Cabai Rawit di Kabupaten Magelang. Xplore: Journal of Statistics, 10(1), 1–11. https://doi.org/10.29244/xplore.v10i1.358

Puspatika, K., Kusumawati, Y. S., & Studi Sistem Informasi Fakultas Ilmu Komputer, P. (2018). Peramalan Harga Cabai Dengan Metode Arima Arch-Garch Dan Single Moving Average Di Kota Semarang Forecasting Of Chili’s Price With Arima Arch-Garch And Single Moving Average Methods In Semarang. Journal of Information System, 03(207), 3569684.

Putri, A. N., & Wardhani, A. K. (2020). PENERAPAN METODE SINGLE MOVING AVERAGE UNTUK PERAMALAN HARGA CABAI RAWIT HIJAU. Indonesian Journal of Technology, Informatics and Science (IJTIS), 2(1), 37–40. https://doi.org/10.24176/ijtis.v2i1.5653

Rahmad Himawan, Z., Pertanian, F., Abdjurachman, U., & Situbondo, S. (2019). ANALISIS FAKTOR FAKTOR YANG MEMPENGARUHI HARGA CABAI RAWIT DI PASAR BESUKI (STUDI KASUS DI DESA BESUKI KECAMATAN BESUKI KABUPATEN SITUBONDO). In AGRIBIOS : Jurnal Ilmiah (Vol. 17, Issue 1).

Rosy, T. (2022). Inflasi dan Pedasnya Harga Cabai. News Detik.Com. https://news.detik.com/kolom/d-6247193/inflasi-dan-pedasnya-harga-cabai

Ruspriyanty, D. I., & Oktaviarina, A. (2018). PERAMALAN PERSEWAAN KASET VIDEO DENGAN MENGGUNAKAN MOVING AVERAGE A’yunin Sofro. Jurnal Ilmiah Matematika, 6(2).

Stevanus, H., Wahyuni, D., Razaf Eriko Simbolon, Y., Ririn Amelia Jurusan Matematika, dan, Bangka Belitung Kampus Terpadu UBB, U., Bangka, K., & Kepulauan Bangka Belitung, P. (2021). PERAMALAN HARGA CABAI RAWIT PADA MASA PANDEMI COVID-19 DI PANGKALPINANG PROVINSI KEPULAUAN BANGKA BELITUNG.

Sugiono. (2009). Metodologi Penelitian Kualitatif dan R&D. Bandung. Alfabeta.

Teguh Erlangga, L., & Yamin Darsyah, M. (2018). Peramalan Harga Cabai Rawit Merah di Jakarta Pusat Mengunakan Metode Moving Average dan Single Exponential Smoothing Forecasting the Prices of Cayenne Pepper in Central Jakarta Using the Moving Average Method and Single Exponential Smoothing. In Prosiding Seminar Nasional Mahasiswa Unimus (Vol. 1).

Putra U. (2017) Analisis Trend Dan Faktor-Faktor Yang Mempengaruhi Harga Cabai Rawit Di Provinsi Jawa Timur - 121510601168_.

Wardah, S. (2016). ANALISIS PERAMALAN PENJUALAN PRODUK KERIPIK PISANG KEMASAN BUNGKUS (Studi Kasus : Home Industry Arwana Food Tembilahan). In Jurnal Teknik Industri: Vol. XI (Issue 3).

Published
2022-11-17
How to Cite
Akbar, M. (2022) “COMPARATIVE STUDY OF CHILLI PRICE PROJECTIONS IN SUMATERA VS JAVA ISLAND”, Journal of Integrated Agribusiness, 4(2), pp. 53-66. doi: 10.33019/jia.v4i2.3566.
Abstract viewed = 631 times
PDF downloaded = 867 times