PENGARUH VARIASI TEKANAN KOMPAKSI PANAS TERHADAP DENSITAS DAN KEKERASAN AMC DIPERKUAT SiO2

  • Muhammad Asep Politeknik Manufaktur Negeri Bangka Belitung
  • Sugiyarto . Politeknik Manufaktur Negeri Bangka Belitung
  • Somawardi . Politeknik Manufaktur Negeri Bangka Belitung
  • Achmad Rusdy Politeknik Manufaktur Negeri Bangka Belitung
  • Sukanto Sukanto Politeknik Manufaktur Negeri Bangka Belitung
Keywords: aluminum matrix composites, silica, powder metallurgy, mechanical alloying, and pressure compaction.

Abstract

Research on aluminum metal matrix composites reinforced with ceramics using powder metallurgy methods has recently been increasingly in demand to be developed. The goals of this study determined the effect of differences in compaction pressure on the density and hardness properties of the resulting composite.  The research method used of is following the stages of the powder metallurgy process, which includes material preparation, mixing and compaction. The mixing of the composite constituent powders was carried out using the mechanical alloying method using a horizontal ball mill for 4 hours. While the hot compaction method used is two-way compression compaction, using a hydraulic pump. The matrix material used is recycled aluminum powder, and the reinforcing material is powder from tin mine tailing silica sand. The hot compaction process was carried out at 500 0C and held for 15 minutes. Two-way compacting pressure variations used 4400 Psi, 4500 Psi and 4600 Psi. Density testing refers to Archimedes with the ASTM B962-15 standard. Meanwhile, the hardness test used the Rockwell hardness testing machine, referring to the ASTM E18-15 standard. The results of the density test and hardness test showed a tendency for the value to increase with increasing compaction pressure applied. The highest density was 2.147 g/cm3 for a sample with a compaction of 4,600 Psi, with the highest hardness value being 53,11 HRB. Based on micro-photographs, it shows that the interlocking mechanical bonds at lower compaction pressures tend to be weak, fractures at the grain boundaries are clearly visible and the pattern of damage tends to show brittle/brittle fractures.

Downloads

Download data is not yet available.

References

[1] P. Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., Gupta, “Advance research progresses in aluminium matrix composites : manufacturing & applications,” vol. 8, no. 5, pp. 4924–4939, 2019.
[2] A. Kaw, Mechanic of Composite Material. Edisi kedua. Amerika Serikat: Taylor & Francis Group, LLC. 2006.
[3] Suhdi, “Analisa Kekuatan Mekanik Komposit Serat Sabut Kelapa (Cocos Nucifera),” J. Tek. Mesin, vol. 2, no. 1, pp. 29–35, 2016.
[4] M. Syahid, A. Hayat, and Aswar, “Effect of Graphite Addition on Aluminum Hybrid Matrix Composite by Powder Metallurgy Method,” Rev. des Compos. des Mater. Av., vol. 32, no. 3, pp. 125–132, 2022, doi: 10.18280/rcma.320303.
[5] I. P. A. Zay, F. R. Zulfi, and A. Gurning, “Daur Ulang Scrap Aluminium Sebagai Solusi Alternatif Untuk Mengurangi Ketergantungan ...,” Conf. Pap., no. November, 2014, doi: 10.13140/2.1.3237.6006.
[6] Y. S. Sukanto, Soenoko, R., Suprapto, W., Irawan, “Characterization of aluminium matrix composite of Al-ZnSiFeCuMg Alloy reinforced with silica sand tailings particles,” J. Mech. Eng. Sci., vol. 14, no. 3, pp. 6971–6981, 2020, doi: 10.15282/jmes.14.3.2020.01.0546.
[7] C. Bulei, I. Kiss, and V. Alexa, “Development of metal matrix composites using recycled secondary raw materials from aluminium wastes,” Mater. Today Proc., vol. 45, pp. 4143–4149, 2020, doi: 10.1016/j.matpr.2020.11.926.
[8] I. A. Wahyudie, R. Soenoko, W. Suprapto, and Y. S. Irawan, “Enhancing hardness and wear resistance of ZrSiO4-SnO2 /Cu10Sn composite produced by warm compaction and sintering,” Metalurgija, vol. 59, no. 1, pp. 27–30, 2020.
[9] H. A. Prasetya, “Pengaruh Silika Dari Abu Sekam Padi Sebagai Bahan Subtitusi Asbes Untuk Pembuatan Kampas Rem Menggunakan Bahan Karet Alam,” Pros. Semin. Nas. Kulit, Karet dan Plast. Ke-5, pp. 153–162, 2016.
[10] Sukanto, W. Suprapto, R. Soenoko, and Y. S. Irawan, “THE EFFECT OF MILLING TIME ON THE ALUMINA PHASE TRANSFORMATION IN THE AMCs POWDER METALLURGY REINFORCED BY SILICA-SAND-TAILINGS,” EUREKA, Phys. Eng., no. 1, pp. 103–117, 2022, doi: 10.21303/2461-4262.2022.001906.
[11] I. A. Wahyudie, R. Soenoko, W. Suprapto, and Y. S. Irawan, “Optimizing warm compaction parameters on the porosity and hardness of Bronze/Tin ore waste composites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 494, no. 1, pp. 0–12, 2019, doi: 10.1088/1757-899X/494/1/012101.
[12] I. Chatur Adhi WA, A. A. Alit Triadi, M. Wijana, I. M. Nuarsa, and I. M. Mara, “Kekerasan Produk Metalurgi Serbuk Berbahan Limbah Aluminium dengan Metode Kompaksi Bertahap,” J. Sains Teknol. Lingkung., pp. 141–146, 2021, doi: 10.29303/jstl.v0i0.252.
[13] R. Suprapto, W & Soenoko, “Teknologi Metalurgi Serbuk, Solo, Pena Mas Publishing, ISBN: 978-602-73670-0-5.,” vol. 192, p. 10, 2015.
[14] R. Rinanda and D. Puryanti, “Analisis Sifat Magnetik Kalsium Ferit yang Disintesis Menggunakan Metode Metalurgi Serbuk,” J. Fis. Unand, vol. 9, no. 2, pp. 224–230, 2020, doi: 10.25077/jfu.9.2.224-230.2020.
[15] S. E. Susilowati, A. Fudholi, and D. Sumardiyanto, “Mechanical and microstructural characteristics of Cu–Sn–Zn/ Gr metal matrix composites processed by powder metallurgy for bearing materials,” Results Eng., vol. 14, no. February, p. 100377, 2022, doi: 10.1016/j.rineng.2022.100377.
[16] I. A. Wahyudie, “H OT C OMPACTION P ROCESS O PTIMIZATION FOR I MPROVEMENT T RIBOLOGY B EHAVIOR OF Z IRCONIUM S ILICATE S TRENGTHENED BMC S `,” 2021.
[17] M. S. El-Eskandarany, Mechanical Alloying, Nanotechnology, Material Science and Powder Metallurgy. second edition, Elsevier, ISBN: 978-1-4557-7752-5, See discussions, stats, and author profiles for this publication at: https://www.researchgate.net. 2015.
[18] Munasir, Triwikantoro, M. Zainuri, R. Bäßler, and Darminto, “Mechanical strength and corrosion rate of aluminium composites (Al/SiO2): Nanoparticle silica (NPS) as reinforcement,” J. Phys. Sci., vol. 30, no. 1, pp. 81–97, 2019, doi: 10.21315/jps2019.30.1.7.
[19] C. Suryanarayana, “Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials,” Research, vol. 2019, pp. 1–17, 2019, doi: 10.34133/2019/4219812.
[20] Sukanto, R. Soenoko, W. Suprapto, and Y. S. Irawan, “Parameter Optimization of Ball Milling Process for Silica Sand Tailing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 494, no. 1, 2019, doi: 10.1088/1757-899X/494/1/012073.
[21] M. Milani, “Optimization of the pressing process of triangular shaped cutting tool inserts,” 2016.
[22] ASTM International, “Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle,” Astm B962-17, vol. i, pp. 1–7, 2013, doi: 10.1520/B0962-17.2.
[23] E110-14, “Standard Test Method for Rockwell and Brinell Hardness of Metallic Materials by Portable Hardness Testers,” ASTM B. Stand., pp. 4–8, 2015, doi: 10.1520/E0110-14.2.
Published
2023-05-08
How to Cite
Asep, M., ., S., ., S., Rusdy, A., & Sukanto, S. (2023). PENGARUH VARIASI TEKANAN KOMPAKSI PANAS TERHADAP DENSITAS DAN KEKERASAN AMC DIPERKUAT SiO2. Machine : Jurnal Teknik Mesin, 9(1), 1-7. https://doi.org/10.33019/jm.v9i1.3606