Analysis of Diazo Quinolinone Complexes with Various Metal Ions

  • Stefan Marco Rumengan Universitas Negeri Manado https://orcid.org/0009-0002-7883-5772
  • Khoirotul Ummah Universitas Islam Negeri Sunan Ampel
  • Ana Mardliyah Universitas Islam Negeri Walisongo https://orcid.org/0000-0002-6376-4783
  • Jefry Wijaya University Pattimura
  • Febrindah Ester Tambalean
  • Soenandar Milian Tengker Universitas Negeri Manado https://orcid.org/0000-0003-2153-2359
  • Abdon Saiya Universitas Negeri Manado
  • Marlina Karundeng Universitas Negeri Manado
  • Vlagia Indira Paat Universitas Negeri Manado
Keywords: Diazo, Metal Ion, Quinolionone

Abstract

Quinolones are heterocyclic compounds that are important in medicine and materials for DSSCs or OLEDs. One thing that is rarely studied is the ability to detect metal ions. Diazo groups have an important role in forming complexes with metal ions. This research aims to obtain initial information regarding the metal detection capabilities of diazo quinolinone compounds. The compound 7-[(2,4-dihydroxyphenyl)diazenyl]-4-methyl-2-quinolinone is the test target. Tests were carried out with various metal ions in MeOH. Next, the wavelength of the complex was determined using a UV-Vis spectrophotometer. The results of complex analysis of Compound 2 with various metal ions show the potential to be an indication of the presence of metal ions.

Downloads

Download data is not yet available.

References

Alalawy, A. I., Alatawi, K., Alenazi, N. A., Qarah, A. F., Alatawi, O. M., Alnoman, R. B., Alharbi, A., & El-Metwaly, N. M. (2024). Synthesis, molecular modeling, and anticancer activity of new thiophene and thiophene-pyrazole analogues incorporating benzene-sulfonamide moiety as carbonic anhydrase isozymes (CA-IX and CA-XII). Journal of Molecular Structure, 1295, 136609. https://doi.org/10.1016/j.molstruc.2023.136609
Al-Anazi, M. (2023). Synthesis, anticancer, and docking of new thiadiazolyl-triazole analogues hybridized with thiazolidinone/thiophene. Journal of Molecular Structure, 1278, 134864. https://doi.org/10.1016/j.molstruc.2022.134864
Chen, Y., Tang, C., Wu, Y., Mo, S., Wang, S., Yang, G., & Mei, Z. (2015). Glycosmisines A and B: Isolation of two new carbazole–indole-type dimeric alkaloids from Glycosmis pentaphylla and an evaluation of their antiproliferative activities. Organic & Biomolecular Chemistry, 13(24), 6773–6781. https://doi.org/10.1039/C5OB00695C
Chun, S., Reddy Putta, R., Hong, J., Choi, S. H., Oh, D., & Hong, S. (2023). Iron‐Catalyzed Transfer Hydrogenation: Divergent Synthesis of Quinolines and Quinolones from ortho ‐Nitrobenzyl Alcohols. Advanced Synthesis & Catalysis, 365(19), 3367–3374. https://doi.org/10.1002/adsc.202300661
Elçin, S., Çılgı, G. K., Bayrakdar, A., & Deligöz, H. (2015). The synthesis and characterization of azocalix[4]arene based chemosensors and investigation of their properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 142, 178–187. https://doi.org/10.1016/j.saa.2015.01.087
Ganesan, P., Chandiran, A., Gao, P., Rajalingam, R., Grätzel, M., & Nazeeruddin, M. Khaja. (2014). Molecular Engineering of 2-Quinolinone Based Anchoring Groups for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 118(30), 16896–16903. https://doi.org/10.1021/jp5004352
Gao, J., Hou, H., & Gao, F. (2023). Current scenario of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens. European Journal of Medicinal Chemistry, 247, 115026. https://doi.org/10.1016/j.ejmech.2022.115026
Hannan Khan, A., Altaf, S., Rasool, N., Mubarik, A., Ahmad, M., Shah, S. A. A., Imran, S., & Bajaber, M. A. (2024). The role of commonly used transition metals in total synthesis of indole alkaloids. Arabian Journal of Chemistry, 17(2), 105523. https://doi.org/10.1016/j.arabjc.2023.105523
Hebbar, N. U., Patil, A. R., Gudimani, P., Shastri, S. L., Shastri, L. A., Joshi, S. D., Vootla, S. Kumar., Khanapure, S., Shettar, A. K., & Sungar, V. A. (2022). Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies. Journal of Molecular Structure, 1269, 133795. https://doi.org/10.1016/j.molstruc.2022.133795
Heckershoff, R., Eberle, L., May, G., Krämer, P., Rominger, F., Rudolph, M., & Hashmi, A. S. K. (2022). Gold‐Catalyzed Bidirectional Access to Planar Heptacyclic Benzobispyrido[1,2‐ a ]indoles and Benzobispyrrolo[1,2‐ a ]Quinolines for Materials Science. Advanced Synthesis & Catalysis, 364(20), 3559–3566. https://doi.org/10.1002/adsc.202200708
Jiang, B., Ning, X., Gong, S., Jiang, N., Zhong, C., Lu, Z.-H., & Yang, C. (2017). Highly efficient red iridium( III ) complexes cyclometalated by 4-phenylthieno[3,2-c]quinoline ligands for phosphorescent OLEDs with external quantum efficiencies over 20%. J. Mater. Chem. C, 5(39), 10220–10224. https://doi.org/10.1039/C7TC03667A
Khanum, R., Shoukat Ali, R. A., Rangaswamy, H. R., Santhosh Kumar, S. R., Prashantha, A. G., & Jagadisha, A. S. (2023). Recent review on Synthesis, spectral Studies, versatile applications of azo dyes and its metal complexes. Results in Chemistry, 5, 100890. https://doi.org/10.1016/j.rechem.2023.100890
Kim, B., & Kim, T. H. (2015). Electrochemical Studies for Cation Recognition with Diazo-Coupled Calix[4]arenes. Journal of Analytical Methods in Chemistry, 2015, 1–7. https://doi.org/10.1155/2015/579463
Kumar, N. P., Thatikonda, S., Tokala, R., Kumari, S. S., Lakshmi, U. J., Godugu, C., Shankaraiah, N., & Kamal, A. (2018). Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzo-quinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorganic & Medicinal Chemistry, 26(8), 1996–2008. https://doi.org/10.1016/j.bmc.2018.02.050
Liu, H., Tan, Y., Dai, Q., Liang, H., Song, J., Qu, J., & Wong, W.-Y. (2018). A simple amide fluorescent sensor based on quinoline for selective and sensitive recognition of zinc(II) ions and bioimaging in living cells. Dyes and Pigments, 158, 312–318. https://doi.org/10.1016/j.dyepig.2018.05.026
Liu, Y., Ding, L., He, J., Zhang, Z., Deng, Y., He, S., & Yan, X. (2021). A new antibacterial chromone from a marine sponge-associated fungus Aspergillus sp. LS57. Fitoterapia, 154, 105004. https://doi.org/10.1016/j.fitote.2021.105004
López-Martínez, L. M., Santacruz-Ortega, H., Navarro, R. E., Caro-León, F. J., & Ochoa-Terán, A. (2020). Studies by 1H NMR and UV-Vis spectroscopy of the molecular recognition of histamine by copper and zinc complexes of polyazamacrocyclic ligands. Journal of Molecular Structure, 1204, 127545. https://doi.org/10.1016/j.molstruc.2019.127545
McMurry, J. (2016). Organic chemistry (Ninth edition). Cengage Learning.
Peng, Y., Luo, Y.-T., Liu, Q.-Q., Lou, S.-Q., Liang, D.-E., Zhan, Z.-J., Xi, Z.-F., & Ma, L.-F. (2023). Neuroprotective carbazole alkaloids from Streptomyces sp. HS-NF-1322 by inhibition of ferroptosis. Phytochemistry Letters, 55, 112–116. https://doi.org/10.1016/j.phytol.2023.04.006
Prabakaran, G., Vickram, R., Velmurugan, K., Immanuel David, C., Prince Makarios Paul, S., Suresh Kumar, R., Almansour, A. I., Perumal, K., Abiram, A., Prabhu, J., & Nandhakumar, R. (2022). A lead selective dimeric quinoline based fluorescent chemosensor and its applications in milk and honey samples, smartphone and bio-imaging. Food Chemistry, 395, 133617. https://doi.org/10.1016/j.foodchem.2022.133617
Rumengan, S. M., Ummah, K., & Mahardika, R. G. (2023). Synthesis of Diazo Quinolinone. Fullerene Journal of Chemistry, 8(2), 53–58. https://doi.org/10.37033/fjc.v8i2.600
Shiro, T., Fukaya, T., & Tobe, M. (2015). The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. European Journal of Medicinal Chemistry, 97, 397–408. https://doi.org/10.1016/j.ejmech.2014.12.004
Song, M.-X., Huang, Y.-S., Zhou, Q.-G., Deng, X.-Q., & Yao, X.-D. (2021). Synthesis of ring-opened derivatives of triazole-containing quinolinones and their antidepressant and anticonvulsant activities. Bioorganic Chemistry, 106, 104505. https://doi.org/10.1016/j.bioorg.2020.104505
Teng, Y., Suwanarusk, R., Ngai, M. H., Srinivasan, R., Ong, A. S. M., Ho, B., Rénia, L., & Chai, C. L. L. (2015). An amidation/cyclization approach to the synthesis of N-hydroxyquinolinones and their biological evaluation as potential anti-plasmodial, anti-bacterial, and iron(II)-chelating agents. Bioorganic & Medicinal Chemistry Letters, 25(3), 607–610. https://doi.org/10.1016/j.bmcl.2014.12.014
Yin, H., Wu, Y., Jiang, Y., Wang, M., & Wang, S. (2023). Synthesis of Cyclohepta[ b ]indoles and Furo[3,4- b ]carbazoles from Indoles, Tertiary Propargylic Alcohols, and Activated Alkynes. Organic Letters, 25(17), 3078–3082. https://doi.org/10.1021/acs.orglett.3c00885
Zhang, B., Liu, H., Wu, F., Hao, G., Chen, Y., Tan, C., Tan, Y., & Jiang, Y. (2017). A dual-response quinoline-based fluorescent sensor for the detection of Copper (II) and Iron(III) ions in aqueous medium. Sensors and Actuators B: Chemical, 243, 765–774. https://doi.org/10.1016/j.snb.2016.12.067
Zhu, Y., Luo, K., Li, X., Wang, H., Yang, C., Ni, H., & Li, Q. (2018). Four new binuclear platinum (II) complexes with 2-(1H)-quinolinone as bridging ligands: Synthesis, crystal structure and photophysical properties. Journal of Luminescence, 204, 296–302. https://doi.org/10.1016/j.jlumin.2018.08.010
Zhu, Z., Feng, X., Wang, H., Fan, J., Zhang, C., Song, G., & Tang, L. (2023). Design, synthesis and biological activity of coumarin-chalcone hybrid derivatives as phosphodiesterase type Ⅱ (PDE2) inhibitors. Tetrahedron, 149, 133733. https://doi.org/10.1016/j.tet.2023.133733
Published
2024-05-01
How to Cite
Rumengan, S., Ummah, K., Mardliyah, A., Wijaya, J., Tambalean, F., Tengker, S., Saiya, A., Karundeng, M., & Paat, V. (2024). Analysis of Diazo Quinolinone Complexes with Various Metal Ions. Stannum : Jurnal Sains Dan Terapan Kimia, 6(1), 43-47. https://doi.org/10.33019/jstk.v6i1.4882
Section
Articles