Removal Co(II) Ions in Aqueous Solution using Fe-MCM-41

Penghilangan Ion Co(II) dalam Larutan Berair menggunakan Fe-MCM-41

  • M. Mahfudz Fauzi Syamsuri Department of Chemistry, Universitas Islam Negeri Raden Fatah Palembang
  • Weni Febriani Department of Chemistry, Universitas Islam Negeri Raden Fatah Palembang
  • Sutarno Sutarno Department of Chemistry, Universitas Gadjah Mada
  • Suyanta Suyanta Department of Chemistry, Universitas Gadjah Mada
Keywords: adsorption, Co(II) ions, Fe-MCM-41, heavy metal

Abstract

The removal of Co(II) ions using Fe-MCM-41 adsorbent was studied. Fe-MCM-41 was synthesized by the sonochemical method and then interacted with solutions containing Co(II) ions at various concentrations. The Langmuir equation indicated monolayer adsorption could be well-fitted for the adsorption isotherms. The maximum adsorption capacity of Co(II) ions on Fe-MCM-41 was 62.89 mg/g. Therefore, it could be conclude that the concentration of Co(II) ions in an aqueous solution can be reduced by using Fe-MCM-41 adsorbent.

Downloads

Download data is not yet available.

References

Abbou, B., Lebkiri, I., Ouaddari, H., Kadiri, L., Ouass, A., Habsaoui, A., Lebkiri, A., & Rifi, E. H. (2021). Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: a kinetic and thermodynamic study. TURKISH JOURNAL OF CHEMISTRY, 45(2), 362–376. https://doi.org/10.3906/kim-2004-82
Adjdir, M., Ali-Dahmane, T., Friedrich, F., Scherer, T., & Weidler, P. G. (2009). The synthesis of Al-MCM-41 from volclay — A low-cost Al and Si source. Applied Clay Science, 46(2), 185–189. https://doi.org/10.1016/j.clay.2008.11.009
Alardhi, S. M., Alrubaye, J. M., & Albayati, T. M. (2020). Adsorption of methyl green dye onto MCM-41: Equilibrium, kinetics and thermodynamic studies. Desalination and Water Treatment, 179, 323–331. https://doi.org/10.5004/dwt.2020.25000
Albayati, T. M. (2019). Application of nanoporous material MCM-41 in a membrane adsorption reactor (MAR) as a hybrid process for removal of methyl orange. DESALINATION AND WATER TREATMENT, 151, 138–144. https://doi.org/10.5004/dwt.2019.23878
Bernabé, I., Gómez, J. M., Díez, E., Sáez, P., & Rodríguez, A. (2019). Optimization and Adsorption-Based Recovery of Cobalt Using Activated Disordered Mesoporous Carbons. Advances in Materials Science and Engineering, 2019, 1–10. https://doi.org/10.1155/2019/3430176
Bordiga, S., Buzzoni, R., Geobaldo, F., Lamberti, C., Giamello, E., Zecchina, A., Leofanti, G., Petrini, G., Tozzola, G., & Vlaic, G. (1996). Structure and Reactivity of Framework and Extraframework Iron in Fe-Silicalite as Investigated by Spectroscopic and Physicochemical Methods. Journal of Catalysis, 158(2), 486–501. https://doi.org/10.1006/jcat.1996.0048
Boudinar, M., Draoua, Z., Tabti, H. A., Guezzen, B., Kadeche, A., Ramdani, A., Ammam, A., Ech-Chergui, A. N., Boudia, R. A., & Adjdir, M. (2024). Adsorption isotherm and kinetic modeling of malachite green (MG) dye on cost-effective mesoporous material Al-MCM-41 synthesized from local clay. Reaction Kinetics, Mechanisms and Catalysis, 137(4), 2331–2348. https://doi.org/10.1007/s11144-024-02636-8
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
Cashin, V. B., Eldridge, D. S., Yu, A., & Zhao, D. (2018). Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: a review. Environmental Science: Water Research & Technology, 4(2), 110–128. https://doi.org/10.1039/C7EW00322F
Cheng, S., Liu, Y., & Qi, G. (2020). Microwave Synthesis of MCM-41 and Its Application in CO 2 Absorption by Nanofluids. 2020(Il).
Das, S., Sultana, K. W., Ndhlala, A. R., Mondal, M., & Chandra, I. (2023). Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation. Environmental Health Insights, 17. https://doi.org/10.1177/11786302231201259
Gawley, R. E. (2012). Principles of Asymmetric Synthesis (Second). Elsevier. https://doi.org/10.1016/B978-0-08-044860-2.00007-6
Hernández-Ramírez, O., Hill, P. I., Doocey, D. J., & Holmes, S. M. (2007). Removal and immobilisation of cobalt ions by a novel, hierarchically structured, diatomite/zeolite Y composite. J. Mater. Chem., 17(18), 1804–1808. https://doi.org/10.1039/B700048K
Hu, Y. L., Chen, C., Li, W. X., & Zhang, Q. Y. (2024). Efficient and Convenient Transformation of CO2 into α‑Alkylidene Cyclic Carbonates over Reusable and Heterogeneous Cu-MCM-41 Supported Ionic Liquid Catalyst. Silicon, 16(2), 513–523. https://doi.org/10.1007/s12633-023-02692-0
Kulkarni, S. J. (2016). Research and studies on cobalt removal from wastewater. International Journal of Research and Review, 3(7), 41. https://www.academia.edu/download/63785292/IJRR00820200630-11471-17dvvac.pdf
Luo, W., Bai, Z., & Zhu, Y. (2018). Fast removal of Co(ii) from aqueous solution using porous carboxymethyl chitosan beads and its adsorption mechanism. RSC Advances, 8(24), 13370–13387. https://doi.org/10.1039/c7ra13064c
Parida, K. M., & Dash, S. K. (2010). Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantane. Journal of Hazardous Materials, 179(1–3), 642–649. https://doi.org/10.1016/j.jhazmat.2010.03.051
Salmani, M. H., Ehrampoush, M. H., Eslami, H., & Eftekhar, B. (2020). Synthesis, characterization and application of mesoporous silica in removal of cobalt ions from contaminated water. Groundwater for Sustainable Development, 11, 100425. https://doi.org/10.1016/j.gsd.2020.100425
Santos, L. F. S., de Jesus, R. A., Costa, J. A. S., Gouveia, L. G. T., de Mesquita, M. E., & Navickiene, S. (2019). Evaluation of MCM-41 and MCM-48 mesoporous materials as sorbents in matrix solid phase dispersion method for the determination of pesticides in soursop fruit (Annona muricata). Inorganic Chemistry Communications, 101, 45–51. https://doi.org/10.1016/j.inoche.2019.01.013
Shafaei, A., Pajootan, E., Nikazar, M., & Arami, M. (2011). Removal of Co (II) from aqueous solution by electrocoagulation process using aluminum electrodes. Desalination, 279(1–3), 121–126. https://doi.org/10.1016/j.desal.2011.05.070
Shen, X., Du, X., Yang, D., Ran, J., Yang, Z., & Chen, Y. (2021). Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves. Journal of Environmental Chemical Engineering, 9(6), 106729. https://doi.org/10.1016/j.jece.2021.106729
Siddiqui, M. N., Chanbasha, B., Al-Arfaj, A. A., Kon’kova, T., & Ali, I. (2021). Super-fast removal of cobalt metal ions in water using inexpensive mesoporous carbon obtained from industrial waste material. Environmental Technology & Innovation, 21, 101257. https://doi.org/10.1016/j.eti.2020.101257
Suyanta, S., Kuncaka, A., & Mudasir, M. (2023). Impregnation of Fe3+ into MCM-41 Pores: Effect of Fe3+ Concentration on the Weight Percent of Fe-Frameworks and Fe-Non-Frameworks. Indonesian Journal of Chemistry, 23(4), 984–996. https://doi.org/10.22146/ijc.79468
Wang, G., Zhang, Y., Jiang, S., Ma, X., & Wei, B. (2020). Removal and recovery of cobalt from Co(II)–containing water samples by dithiocarboxyl polyethyleneimine. Separation and Purification Technology, 251, 117338. https://doi.org/10.1016/j.seppur.2020.117338
Wang, Q., & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358–365. https://doi.org/10.1016/j.envpol.2016.07.011
Yang, J., Chen, H.-Q., Shi, N., Wang, T., Liu, J., & Pan, W.-P. (2022). Porous carbon with uniformly distributed cobalt nanoparticles derived from ZIF-67 for efficient removal of vapor elemental mercury: A combined experimental and DFT study. Chemical Engineering Journal, 428, 132095. https://doi.org/10.1016/j.cej.2021.132095
Zhao, D., Qian, J., Wang, Y., Ma, Z., & Ma, X. (2022). Reactive Adsorption of Gaseous Anisole by MCM–41-Supported Sulfuric Acid. Catalysts, 12(9), 942. https://doi.org/10.3390/catal12090942
Published
2024-10-31
How to Cite
Syamsuri, M. M., Febriani, W., Sutarno, S., & Suyanta, S. (2024). Removal Co(II) Ions in Aqueous Solution using Fe-MCM-41. Stannum : Jurnal Sains Dan Terapan Kimia, 6(2), 109-114. https://doi.org/10.33019/jstk.v6i2.5481
Section
Articles