Potensi Mikroalga Anabaena sp. Sebagai Bahan Utama Bioetanol

  • Imam Mishbach Jurusan Ilmu Kelautan dan Perikanan, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas
  • Nila Suci Permatasari Jurusan Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
  • M Zainuri Oseanografi, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
  • Hermin Pancasakti Kusumaningrum Jurusan Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
  • Endah Dwi Hastuti Jurusan Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia

Abstract

Bioethanol is an energy source that can be used to reduce the use of fossil fuels. It has some advantages such as  biodegradable, and non-toxic because the main ingredients come from biomass and produce fewer pollutants. Anabaena sp. is Cyanobacteria that can be used as the main ingredient of bioethanol, its advantages are that it does not compete with food, its growth is fast and it contains carbohydrates. The purpose of this study was to analyze the carbohydrate content of Anabaena sp. The stages of the research carried out were Anabaena sp. cultivated for 30 days in freshwater using Walne media, then harvested. The collected biomass was then tested using proximate analysis with two replications. In this study, the data obtained in the form of growth of Anabaena sp. and carbohydrate content was presented in the form of tables and graphs. The results showed that Anabaena sp. which was cultivated for 30 days and harvested biomass was carried out in an exponential phase (day 14), had a carbohydrate content of 25.43 %, protein of 53.70 %, and lipid of 2.40 %. Based on the results of the study, it can be concluded that the biomass of Anabaena sp. has a carbohydrate content of 25.43 % and has the potential as the main ingredient of bioethanol.

Keywords: energi, cyanobacteria, karbohidrat, keanekaragaman hayati

Downloads

Download data is not yet available.

References

Amalo, D., Gaol, M. L., & Beribe, H. D. (2019). Pengaruh Konsentrasi Air Kelapa Terhadap Pertumbuhan Mikroalga Chlorella vulgaris. Biotropikal Sains, 16, 28–39.
Deb, D., Mallick, N., & Bhadoria, P. B. S. (2021). Engineering culture medium for enhanced carbohydrate accumulation in Anabaena variabilis to stimulate production of bioethanol and other high-value co-products under cyanobacterial refinery approach. Renewable Energy, 163, 1786–1801.
Fu, J., Huang, Y., Liao, Q., Xia, A., Fu, Q., & Zhu, X. (2019). Photo-bioreactor design for microalgae: A review from the aspect of CO2 transfer and conversion. Bioresource Technology, 292, 121947.
Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Feng, L. J., Liu, J. zhi, Liu, M., & Cai, H. wen. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55–61.
Gaurav, N., & Kumar, A. (2018). Morphology & Ecology of Selected Bga (Aulosira, Tolypothrix, Nostoc). International Journal of General Medicine and Pharmacy, 5, 37–46.
Hajar, S., Azhar, M., Abdulla, R., Jambo, S. A., Marbawi, H., Azlan, J., Azifa, A., Faik, M., & Francis, K. (2017). Yeasts in sustainable bioethanol production : A review. Biochemistry and Biophysics Reports, 10, 52–61.
Han, F., Pei, H., Hu, W., Jiang, L., Cheng, J., & Zhang, L. (2016). Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment. Bioresource Technology, 209, 16–22.
Hernández, D., Riaño, B., Coca, M., & García-gonzález, M. C. (2015). Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal, 262, 939–945.
Hossain, N., Mahlia, T. M. I., Zaini, J., & Saidur, R. (2019). Techno-economics and Sensitivity Analysis of Microalgae as Commercial Feedstock for Bioethanol Production. Environmental Progress and Sustainable Energy, 38, 1–14.
Kemendikbud. (2013). Produksi Pakan Alami Buku ajar Kelas X.
Kumar, K., Ghosh, S., Angelidaki, I., Holdt, S. L., Karakashev, D. B., Alvarado, M., & Das, D. (2016). Recent developments on biofuels production from microalgae and macroalgae. Renewable and Sustainable Energy Reviews, 65, 235–249.
Kurniawan, M. H., Sriati, M. untung kurnia agung, & Mulyani, Y. (2017). Pemanfaatan Skeletonema sp. Dalam Mereduksi Limbah Minyak Solar di Perairan. Jurnal Perikanan Dan Kelautan, 8, 68–75.
Okryreza, A., Meitiandari, M., & Luqman, B. (2013). Pengikatan Karbon Dioksida dengan Mikroalga (Chlorella vulgaris, Chlamydomonas sp., Spirulina sp.) Dalam Upaya Untuk Meningkatkan Kemurnian Biogas. Jurnal Teknologi Kimia Dan Industri, 2, 212–216.
Papagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Computational and Structural Biotechnology, 3, 1–8.
Patel, A., Matsakas, L., Rova, U., & Christakopoulos, P. (2019). A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresource Technology, 278, 424–434.
Primaryadi, I. N. B., Anggreni, A. A. M. D., & Wartini, N. M. (2015). Pengaruh Penambahan Magnesium Sulfat Heptahidrat dan Feri Klorida Pada Blue Green Medium-11 Terhadap Konsentrasi Biomassa Mikroalga Tetraselmis chuii. Jurnal REKAYASA DAN MANAJEMEN AGROINDUSTRI, 3, 92–100.
Rai, I. K., Putra, W., Dewi, A. A., & Arnata, I. W. (2015). Pengaruh Jenis Media Terhadap Konsentrasi Biomassa Dan Klorofil Mikroalga Tetraselmis chuii. Rekayasa Dan Manajemen Agroindustri, 3, 40–46.
Regista, Ambeng, Litaay, M., & Umar, M. R. (2017). Pengaruh Pemberian Vermikompos Cair Lumbricus rubellus Hoffmeister Pada Pertumbuhan Chlorella sp. BIOMA : JURNAL BIOLOGI MAKASSAR, 2, 1–8.
Reyimu, Z., & Özçimen, D. (2017). Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. Journal of Cleaner Production, 150, 40–46.
Selvika, Z., Kusuma, A. B., Herliany, N. E., & Negara, B. F. S. (2016). The growth rate of the Chlorella sp. at different concentrations of coal waste water. Depik, 5, 107–112.
Setyawati, F., Satyantini, W. H., Arief, M., & Pujiastuti, K. K. (2018). Teknik Kultur Tetraselmis chuii Dalam Skala Laboratorium di PT. Central Pertiwi Bahari, Rembang, Jawa Tengah. Journal of Aquaculture and Fish Health, 7, 63.
Sirait, P. S., Setyaningsih, I., & Tarman, K. (2019). Aktivitas Antikanker Ekstrak Spirulina yang Dikultur Pada Media Walne dan Media Organik. JPHPI, 22, 50–59.
Sitther, V., Tabatabai, B., Fathabad, S. G., Gichuki, S., Chen, H., & Arumanayagam, A. C. S. (2020). Cyanobacteria as a biofuel source: advances and applications. In Advances in Cyanobacterial Biology, 14214, 269–289.
Wu, J. Y., Lay, C. H., Chen, C. C., & Wu, S. Y. (2017). Lipid accumulating microalgae cultivation in textile wastewater: Environmental parameters optimization. Journal of the Taiwan Institute of Chemical Engineers, 79, 1–6.
Zahra, Z., Choo, D. H., Lee, H., & Parveen, A. (2020). Cyanobacteria: Review of current potentials and applications. Environments - MDPI, 7, 13.
Published
2022-07-06
How to Cite
Mishbach, I., Permatasari, N., Zainuri, M., Kusumaningrum, H., & Hastuti, E. (2022). Potensi Mikroalga Anabaena sp. Sebagai Bahan Utama Bioetanol. EKOTONIA: Jurnal Penelitian Biologi, Botani, Zoologi Dan Mikrobiologi, 7(1), 69-76. https://doi.org/10.33019/ekotonia.v7i1.3144
Abstract viewed = 1804 times
PDF downloaded = 1616 times