Uji Kualitas Bakteri pada Terasi Toboali dengan Lama Fermentasi yang Berbeda

  • Henny Helmi Prodi Biologi, Fakultas Pertanianan, Universitas Bangka Belitung, Indonesia
  • Ahmad Arsyadi Prodi Biologi, Fakultas Pertanian, Perikanan dan Biologi, Universitas Bangka Belitung, Indonesia
  • Salmi Salmi Prodi Biologi, Fakultas Pertanian, Perikanan dan Biologi, Universitas Bangka Belitung, Indonesia

Abstract

Terasi is a condiment in a variety of Indonesian cuisine. Toboali’s shrimp paste is made in the Toboali district, South Bangka. This shrimp paste is famous for being delicious and without other additives such as preservatives and coloring agent. The purpose of this study was to compare the bacteria quality of shrimp paste with different fermentation times. The salt content used in this study was 20%. Shrimp used as raw material in this study was A. japonicus and the salt used was solar salt.  The results showed that the shrimp paste at 0 and 7 days of fermentation contained coliform and colifecal. After 14 days and 28 days of fermentation, the shrimp paste did not contain coliform and colifecal. All samples did not contain E.coli and Salmonella. Meanwhile, the total nonhalophilic bacteria and halophilic bacteria decreased until the end of fermentation. Lactic acid bacteria increased until 14 days fermentation and decreased until the end of fermentation. Non-halophilic bacteria was still above the permissible number for food product safety (more than 105 CFU/g) up to 21 days of fermentation. Based on the results obtained, the shrimp paste should be fermented up to 28 days of fermentation to reduce the number of coliform, colifecal and total non-halophilic bacteria.

Keywords: bakteri, cemaran, garam 20%, terasi

Downloads

Download data is not yet available.

References

Albarracín, W., Sánchez, I. C., Grau, R., & Barat, J. M. (2011). Salt in food processing; usage and reduction: A review, International Journal of Food Science and Technology, 46(7), 1329–1336.
Ali, M., Kusnadi, J., Aulanni’am, A., & Yunianta, Y. (2020). Amino acids, fatty acids and volatile compounds of Terasi Udang, an Indonesian Shrimp paste, during fermentation, AACL Bioflux, 13(2), 938–950.
Cai, L., Wang, Q., Dong, Z., Liu, S., Zhang, C., & Li, J. (2017). Biochemical, Nutritional, and Sensory Quality of the Low Salt Fermented Shrimp Paste, Journal of Aquatic Food Product Technology, 26(6), 706–718.
Feng, P., Weagant, S. D., Grant, M. A., and Burkhardt, W. (2011). BAM Chapter 4 Enumeration of Escherichia coli and the Coliform Bacteria, retrieved from internet: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria, (6), 1–7.
Fernández, M., & Zúñiga, M. (2006). Amino acid catabolic pathways of lactic acid bacteria, Critical Reviews in Microbiology, 32(3), 155–183.
Fukui, Y., Yoshida, M., Shozen, K. ichi, Funatsu, Y., Takano, T., Oikawa, H., Yano, Y., & Satomi, M. (2012). Bacterial communities in fish sauce mash using culture-dependent and -independent methods, Journal of General and Applied Microbiology, 58(4), 273–281.
Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage, Current Opinion in Food Science, 2(Figure 2), 106–117.
Gildberg, A., & Thongthai, C. (2008). The Effect of Reduced Salt Content and Addition of Halophilic Lactic Acid Bacteria on Quality and Composition of Fish Sauce Made from Sprat, Journal of Aquatic Food Product Technology, 10(1), 77–78.
Gregory, G. J., & Boyd, E. F. (2021). Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae, Computational and Structural Biotechnology Journal, 19, 1014–1027.
Hajeb, P., & Jinap, S. (2012). Fermented shrimp products as source of umami in Southeast Asia, Journal of Nutrition & Food Sciences, 01(S10), 1–5.
Helmi, H., Astuti, D. I., Dungani, R., & Aditiawati, P. (2022). A Comparative Study on Quality of Fermented Shrimp Paste (Terasi) of Pelagic Shrimp from, Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 17(1), 23–34.
Helmi, H., Astuti, D. I., Putri, S. P., Sato, A., Laviña, W. A., Fukusaki, E., & Aditiawati, P. (2022). Dynamic Changes in the Bacterial Community and Metabolic Profile during Fermentation of Low-Salt Shrimp Paste (Terasi), Metabolites, 12(118), 1–18.
Joghee, N. N., & Jayaraman, G. (2014). Metabolomic characterization of halophilic bacterial isolates reveals strains synthesizing rare diaminoacids under salt stress, Biochimie, 102(1), 102–111.
Lee, S. H., Jung, J. Y., & Jeon, C. O. (2014). Microbial successions and metabolite changes during fermentation of salted shrimp (saeu-jeot) with different salt concentrations, PLoS ONE, 9(2), 1–12.
Lee, S., Kim, D., Son, Y., Le, H., Jo, S. W., Lee, J., Song, Y., & Kim, H. (2022). Effects of Salt Treatment Time on the Metabolites , Microbial Composition , and Quality Characteristics of the Soy Sauce Moromi Extract.
Leejeerajumnean, A., Ames, J. M., & Owens, J. D. (2000). Effect of ammonia on the growth of Bacillus species and some other bacteria, Letters in Applied Microbiology, 30(5), 385–389.
Mulyani, S., Vestiyati, P. M., Kusnandar, Alamsyah, H. K., & Simanjuntak, S. W. (2021): Effect of differences in salt concentration on the quality of rebon shrimp paste (Acetes Sp) in Tegal District, IOP Conference Series: Earth and Environmental Science, 755(1).
Pal, M., Ketema, A., Anberber, M., Mulu, S., & Dutta, Y. (2016). Microbial quality of Fish and Fish Products, Microbial Quality of Fish and Fish Products, 43(2), 1–4.
Prihanto, A. A., & Muyasyaroh, H. (2021): The Indonesian fermented food product terasi : history and potential bioactivities, Systematic Reviews in Pharmacy, 12(2), 378–384.
Pyz-ŁUkasik, R., Knysz, P., and Gondek, M. (2018). Hygiene Quality and Consumer Safety of Traditional Short-and Long-Ripened Cheeses from Poland, Journal of Food Quality, 2018, 1–7.
Rahmayati, R., Har Riyadi, P., & Rianingsih, L. (2014). Perbedaan konsentrasi garam terhadap pembentukan warna terasi udang rebon (Acetes sp.) basah, Jurnal Pengolahan Dan Bioteknologi Hasil Perikanan, 3(1), 108117.
Rosida, R., & Faridayanti, A. (2013). Kontaminasi Mikroba pada Terasi yang Beredar di Pasar Wilayah Surabaya Timur, J. Rekapangan, 7(1), 67–75.
Ruginescu, R., Enache, M., Popescu, O., Gomoiu, I., Cojoc, R., Batrinescu-Moteau, C., Maria, G., Dumbravician, M., & Neagu, S. (2022): Characterization of Some Salt-Tolerant Bacterial Hydrolases with Potential Utility in Cultural Heritage Bio-Cleaning, Microorganisms, 10(3), 1–15.
Sang, X., Li, K., Zhu, Y., Ma, X., Hao, H., Bi, J., Zhang, G., & Hou, H. (2020). The Impact of Microbial Diversity on Biogenic Amines Formation in Grasshopper Sub Shrimp Paste During the Fermentation, Frontiers in Microbiology, 11(April), 1–13.
Sarojnalini, C., & Suchitra, T. (2009). Microbial profile of starter culture fermented fish product “Ngari” of Manipur, Indian Journal of Fisheries, 56(2), 123–127.
Selvaraj, B., Buckel, W., Golding, B. T., Ullmann, G. M., & Martins, B. M. (2016). Structure and function of 4-hydroxyphenylacetate decarboxylase and its cognate activating enzyme, Journal of Molecular Microbiology and Biotechnology, 26(1–3), 76–91.
Sévin, D. C., Stählin, J. N., Pollak, G. R., Kuehne, A., & Sauer, U. (2016). Global metabolic responses to salt stress in fifteen species, PLoS ONE, 11(2), 1–21.
Shi, Y. C., Lai, C. Y., Lee, B. H., & Wu, S. C. (2022). The Bacterial and Fungi Microbiota of Soy Sauce‐Supplied Lactic Acid Bacteria Treated with High‐Pressure Process, Fermentation, 8(3).
Stringer, S., & Pin, C. (2005): Microbial risks associated with salt reduction in certain foods and alternative options for preservation. Technical Report., Institute of Food Research, Norwich, UK, retrieved from internet: http://multimedia.food.gov.uk/multimedia/pdfs/acm740a.pdf, 50.
Vanholder, R., De Smet, R., & Lesaffer, G. (1999). p-Cresol: A toxin revealing many neglected but relevant aspects of uraemic toxicity, Nephrology Dialysis Transplantation, 14(12), 2813–2815.
Xu, W., Yu, G., Xue, C., Xue, Y., & Ren, Y. (2008). Biochemical changes associated with fast fermentation of squid processing by-products for low salt fish sauce, Food Chemistry, 107(4), 1597–1604.
Yang, X., Hu, W., Xiu, Z., Jiang, A., Yang, X., Saren, G., Ji, Y., Guan, Y., & Feng, K. (2020). Effect of salt concentration on microbial communities, physicochemical properties and metabolite profile during spontaneous fermentation of Chinese northeast sauerkraut, Journal of Applied Microbiology, 129(6), 1458–1471.
Yuktika, S., Sutiyanti, E., Dhewi, E. S., Martika, S. D., & Damas, R. (2017). Pengaruh Variasi Konsentrasi Garam terhadap Kualitas Fermentasi Udang The Influence of Salt Concentration on the Fermentation of Shrimp, Bioedukasi, 10(2), 18–23.
Zang, J., Xu, Y., Xia, W., & Regenstein, J. M. (2020). Quality, functionality, and microbiology of fermented fish: a review, Critical Reviews in Food Science and Nutrition, 60(7), 1228–1242.
Published
2022-06-30
How to Cite
Helmi, H., Arsyadi, A., & Salmi, S. (2022). Uji Kualitas Bakteri pada Terasi Toboali dengan Lama Fermentasi yang Berbeda. EKOTONIA: Jurnal Penelitian Biologi, Botani, Zoologi Dan Mikrobiologi, 7(1), 77-83. https://doi.org/10.33019/ekotonia.v7i1.3145
Abstract viewed = 740 times
PDF downloaded = 1380 times