The Effect of Keyway Geometry Ratio of Shaft Against Fatigue Failure

  • Bachry Fahmiansyah Jurusan Teknik Mesin Universitas Sultan Ageng Tirtayasa Jl. Jendral Sudirman km 3 Cilegon 42435 Indonesia

Abstract

Fatigue is one of the causes of damage for a shaft. Fatigue cannot be predicted, it can happen suddenly. Therefore need further improvement about fatigue causes. In previous studies, many researchers have made improvements for material commonly used as a shaft to increase the strength of fatigue, but there’s still a little bit of research that discusses the surface design of the shaft. The purpose of this research is to study the effect of the ratio of the keyway geometry against fatigue by looking at the ratio between the width and depth of the keyway. The method is a simulation method with SolidWorks. The fatigue simulation typed use is rotary bending with ASTM E466 standard. The keyway ratio variants are 3:1 mm, 3:2 mm, and 3:3 mm with each load are 40%, 50%, 60%, 70%, and 80% from ultimate tensile strength material. The results in a 40% load, variants 1,2,3 reach more than 1.000.000 cycles until broken. 50% loading as the same as 40% loading. Until 60% load, variant 1 still reaches 1.000.000 cycles, variant 2 gets 402.699 cycles, variant 3 gets 317.727 cycles until the material is damaged. 70% load, variant 1 gets 641.211 cycles, variant 2 gets 201348 cycles, variant 3 gets 166.116 cycles until the material is damaged. 80% load, variant 1 gets 311.218 cycles, variant 2 gets 123.921 cycles, variant 3 gets 102.371 cycles until the material is damaged. With the same broken position on each round groove keyway.

Keywords: Fatigue, Shaft, Key, Simulation, SolidWorks

Downloads

Download data is not yet available.

References

[1] Sunardi, R. Lusiani, and R. Santoso, “Effect of airflow speed as cooling media in the hardening process against hardness, corrosion rate and fatigue life of medium carbon steel,” Bull. Mater. Sci, vol. xx, No. x, no. x, pp. 1–8, 2017, doi: 10.1007/sxxxx-0xx-1xyz-8.
[2] S. Sunardi, E. Listijorini, and R. Sandro, “Pengaruh Bentuk Bukaan Terhadap Kekuatan dan Getaran Balok,” Sintek J. Mesin Teknol., vol. 12, no. 2, pp. 107–112, 2018.
[3] Sunardi, E. Listijorini, and M. Sahroni, “Pengaruh Jarak Sel Bukaan Balok Terhadap Kekuatan Material dan Karakteristik Getaran,” Mach. ; J. Tek. Mesin, vol. 2, no. 2, pp. 6–10, 2016.
[4] M. Blatnická, M. Sága, P. Kopas, and M. Handrik, “Numerical simulation and experimental verification of torsion fatigue tests for material Weldox,” Transp. Res. Procedia, vol. 40, pp. 631–638, 2019, doi: 10.1016/j.trpro.2019.07.090.
[5] E. Budiyanto, E. Nugroho, and A. Zainudin, “Uji Ketahanan Fatik Aluminium Scrap Hasil Remelting Piston Bekas Menggunakan Alat Uji Fatik Tipe Rotary Bending,” Turbo J. Progr. Stud. Tek. Mesin, vol. 7, no. 1, 2018, doi: 10.24127/trb.v7i1.717.
[6] R. Rahmatullah and R. Ahmad, “Analisa Pengujian Lelah Material Bronze Dengan Menggunakan Rotary Bending Fatigue Machine,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 1, no. 1, pp. 1–11, 2018, doi: 10.30596/rmme.v1i1.2430.
[7] N. L. Pedersen, “Stress concentrations in keyways and optimization of keyway design,” J. Strain Anal. Eng. Des., vol. 45, no. 8, pp. 593–604, 2010, doi: 10.1243/03093247JSA632.
[8] I. Isranuri, S. Abda, F. Ariani, D. T. Mesin, F. Teknik, and U. S. Utara, “Pengujian Fatik Pada Material Paduan Aluminium,” no. 3, pp. 51–59, 2017.
[9] S. O. Afolabi, B. I. Oladapo, C. O. Ijagbemi, A. O. M. Adeoye, and J. F. Kayode, “Design and finite element analysis of a fatigue life prediction for safe and economical machine shaft,” J. Mater. Res. Technol., vol. 8, no. 1, pp. 105–111, 2019, doi: 10.1016/j.jmrt.2017.10.007.
[10] S. S. H. A.-M. B. Engel, “Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine,” Int. Sch. Sci. Res. Innov., vol. 11, no. 11, pp. 1785–1790, 2017.
[11] M. T. Ozkan and F. Erdemir, “Determination of stress concentration factors for shafts under tension,” Mater. Test., vol. 62, no. 4, pp. 413–421, 2020, doi: 10.3139/120.111500.
[12] S. P. Raut and L. P. Raut, “A review of various methodologies used for shaft failure analysis,” Int. J. Eng. Res. Gen. Sci., vol. 2, no. 2, pp. 159–171, 2014.
[13] B. Pratowo and N. Apriansyah, “Analisis Kekuatan Fatik Baja Karbon Rendah SC10 Dengan Tipe Rotary Bending,” J. Tek. Mesin Univ. Bandar Lampung, vol. 2, no. 1, pp. 49–58, 2016.
[14] AzoM, “Stainless Steel - Grade 410 ( UNS S41000 ),” pp. 1–5, 2001.
[15] G. E. Dieter, Mechanical metallurgy. 2011.
[16] V. L. H. Vlack, Ilmu dan Teknologi Bahan (Ilmu Logam dan Bukan Logam). 1994.
[17] J. Marta, “Simulasi Pengujian Fatigue Pada Fork Racing Bicycle Menggunakan Standar Cen 14781,” 2016.
Published
2022-01-06
How to Cite
Fahmiansyah, B. (2022). The Effect of Keyway Geometry Ratio of Shaft Against Fatigue Failure. Machine : Jurnal Teknik Mesin, 7(2), 8-14. https://doi.org/10.33019/jm.v7i2.1854
Abstract viewed = 468 times
pdf (Bahasa Indonesia) downloaded = 282 times