Chitosan preparation from white shrimp shell (Litopenaeus vannamei) for Fe(III) removal from Pontianak municipal groundwater

Authors

  • Syahrul Khairi Department of Chemical Engineering, Faculty of Engineering, Universitas Tanjungpura, Jln. Prof. Dr. H. Hadari Nawawi, Pontianak, Kalimantan Barat, Indonesia 78124
  • Raden Bayu Trisno Wijoyo Department of Chemical Engineering, Faculty of Engineering, Universitas Tanjungpura, Jln. Prof. Dr. H. Hadari Nawawi, Pontianak, Kalimantan Barat, Indonesia 78124
  • Lalu Yayan Radhiansyah Research and Development Division of Lombok Linen Company, Mataram, Nusa Tenggara Barat, 83124
  • Tivani Belanisa Department of Chemical Engineering, Faculty of Engineering, Universitas Tanjungpura, Jln. Prof. Dr. H. Hadari Nawawi, Pontianak, Kalimantan Barat, Indonesia 78124
  • Sri Rezeki Department of Chemical Engineering, Faculty of Engineering, Universitas Tanjungpura, Jln. Prof. Dr. H. Hadari Nawawi, Pontianak, Kalimantan Barat, Indonesia 78124

DOI:

https://doi.org/10.33019/jstk.v7i1.5566

Keywords:

Kitosan, Kitin, Adsorpsi, Ion besi, Cangkang Udang putih

Abstract

White shrimp shell (Litopenaeus vannamei) is one of the biomaterial sources to obtain chitin. Chitin could undergo deacetylation process through hydrolysis in strong base solution to produce chitosan. This research aims to determine the potential of chitosan as an environmentally friendly adsorbent for the treatment of groundwater containing high iron ions in Pontianak. The research was conducted in two main stages; obtaining chitosan from the chitin of white shrimp shells, and treating municipal groundwater sample that is high in iron ions content. To obtain chitosan, raw biomaterial chitin from white shrimp shell has been prepared by demineralisation and deproteination process and followed by the deacetylation. The deacetylation of chitin was carried out through hydrolysis reaction in three variation concentrations of aqueous NaOH (i.e 30%, 50%, and 70%-b/v). The measurement of deacetylation degree of chitosan was determined by acid-base titration method and FTIR method. The chitosan with the highest degree of deacetylation was obtained from 70%-b/v NaOH which were 87.4% and 69.0% by acid-base titration method and FTIR, respectively. The chitosan then was utilized in groundwater treatment. The results showed that the chitosan can be utilized as an adsorbent in the pre-treatment process of groundwater in reducing the iron ion content. Almost 40% iron ion were successfully immobilized when 2% (b/v) adsorbent was applied. These results lead to a sustainability of water resources in Pontianak so that city groundwater can be used as an alternative water source for the community.

Downloads

Download data is not yet available.

References

Adams, G. O., Ogedegbe, P. E., & Tawari-Fufeyin, P. (2016). Assessment of Presence of Heavy Metals and Other Pollution Burden Parameters and Their Effect on Water Quality in Benin City, Edo State: Heavy Metals and Other Pollutants and Their Effect on Water Quality. Environmental Quality Management, 26(2), 65–87. https://doi.org/10.1002/tqem.21485
Akhtar, F., Ahmed, M., & Akhtar, M. N. (2021). Drinking, Tap and Canal Water Quality Analysis for Human Consumption: A Case Study of Nawabshah City, Pakistan. Mehran University Research Journal of Engineering and Technology, 40(2), 392–398. https://doi.org/10.22581/muet1982.2102.13
Aydın, Y. A., & Aksoy, N. D. (2009). Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chemical Engineering Journal, 151(1–3), 188–194. https://doi.org/10.1016/j.cej.2009.02.010
Baxter, A., Dillon, M., Anthony Taylor, K. D., & Roberts, G. A. F. (1992). Improved method for i.r. Determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules, 14(3), 166–169. https://doi.org/10.1016/S0141-8130(05)80007-8
Billuri, M., Bonner, J. S., Fuller, C. B., & Islam, M. S. (2015). Impact of Natural Cationic Polymers on Charge and Clarification of Microalgae Suspensions. Environmental Engineering Science, 32(3), 212–221. https://doi.org/10.1089/ees.2014.0301
Burke, A., Yilmaz, E., Hasirci, N., & Yilmaz, O. (2002). Iron(III) ion removal from solution through adsorption on chitosan. Journal of Applied Polymer Science, 84(6), 1185–1192. https://doi.org/10.1002/app.10416
Correa‐Murrieta, Ma. A., López‐Cervantes, J., Sánchez‐Machado, D. I., & Sánchez‐Duarte, R. G. (2014). Synthesis and application of modified chitosan beads for iron removal: Kinetic and isotherm models. Asia-Pacific Journal of Chemical Engineering, 9(6), 895–904. https://doi.org/10.1002/apj.1841
Domszy, J. G., & Roberts, G. A. F. (1985). Evaluation of infrared spectroscopic techniques for analysing chitosan. Die Makromolekulare Chemie, 186(8), 1671–1677. https://doi.org/10.1002/macp.1985.021860815
Duarte, M. L., Ferreira, M. C., Marvão, M. R., & Rocha, J. (2002). An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. International Journal of Biological Macromolecules, 31(1–3), 1–8. https://doi.org/10.1016/S0141-8130(02)00039-9
Fournier, P., Szczepanski, C. R., Godeau, R.-P., & Godeau, G. (2020). Chitosan Extraction from Goliathus orientalis Moser, 1909: Characterization and Comparison with Commercially Available Chitosan. Biomimetics, 5(2), 15. https://doi.org/10.3390/biomimetics5020015
Gopal, J., Muthu, M., Dhakshanamurthy, T., Kim, K. J., Hasan, N., Kwon, S. J., & Chun, S. (2019). Sustainable ecofriendly phytoextract mediated one pot green recovery of chitosan. Scientific Reports, 9(1), 13832. https://doi.org/10.1038/s41598-019-50133-z
Ifuku, S., Nomura, R., Morimoto, M., & Saimoto, H. (2011). Preparation of Chitin Nanofibers from Mushrooms. Materials, 4(8), 1417–1425. https://doi.org/10.3390/ma4081417
Khairi, S., Wibowo, P., Trisno Wijoyo, R. B., & Rezeki, S. (2019). Pengaruh Konsentrasi NaOH pada Deasetilasi Kitin dari Cangkang Udang Putih (Litopenaeus vannamei) dan Aktivitasnya pada Air Gambut. Jurnal Teknologi Lingkungan Lahan Basah, 7(1), 037. https://doi.org/10.26418/jtllb.v7i1.37374
Khan, T. A., Peh, K. K., & Ch’ng, H. S. (2002). Reporting degree of deacetylation values of chitosan: The influence of analytical methods. J. Pharm. Pharm. Sci., 5(3), 205–212.
Klinger, C., Żółtowska-Aksamitowska, S., Wysokowski, M., Tsurkan, M. V., Galli, R., Petrenko, I., Machałowski, T., Ereskovsky, A., Martinović, R., Muzychka, L., Smolii, O. B., Bechmann, N., Ivanenko, V., Schupp, P. J., Jesionowski, T., Giovine, M., Joseph, Y., Bornstein, S. R., Voronkina, A., & Ehrlich, H. (2019). Express Method for Isolation of Ready-to-Use 3D Chitin Scaffolds from Aplysina archeri (Aplysineidae: Verongiida) Demosponge. Marine Drugs, 17(2), 131. https://doi.org/10.3390/md17020131
Kucukgulmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H., & Kadak, A. E. (2011). Physicochemical characterization of chitosan extracted from Metapenaeus stebbingi shells. Food Chemistry, 126(3), 1144–1148. https://doi.org/10.1016/j.foodchem.2010.11.148
Li, N., Bai, R., & Liu, C. (2005). Enhanced and Selective Adsorption of Mercury Ions on Chitosan Beads Grafted with Polyacrylamide via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 21(25), 11780–11787. https://doi.org/10.1021/la051551b
Li, Q., Dunn, E. T., Grandmaison, E. W., & Goosen, M. F. A. (1992). Applications and Properties of Chitosan. Journal of Bioactive and Compatible Polymers, 7(4), 370–397. https://doi.org/10.1177/088391159200700406
Mariam Bukola Aremu, Matthew Omoniyi Adebola, Evans C Egwim, & Muhammadu Tajudeen Salaudeen. (2023). Evaluation of antifungal efficacy of chitosan against Aspergillus fumigatus of stored rice (Oryza sativa). GSC Biological and Pharmaceutical Sciences, 22(3), 204–209. https://doi.org/10.30574/gscbps.2023.22.3.0113
Mende, M., Schwarz, D., Steinbach, C., Boldt, R., & Schwarz, S. (2018). The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel. Materials, 11(3), 373. https://doi.org/10.3390/ma11030373
Ngadiwiyana, N., Fachriyah, E., Sarjono, P. R., Prasetya, N. B. A., Ismiyarto, I., & Subagio, A. (2018). Synthesis of Nano Chitosan as Carrier Material of Cinnamon’s Active Component. Jurnal Kimia Sains Dan Aplikasi, 21(2), 92–97. https://doi.org/10.14710/jksa.21.2.92-97
Nurhaeni, Ridhay, A., & Laenggeng, A. H. (2019). Optimization of Degree of Deacetylation of Chitosan Snail Shells (Pilla ampulaceae). Asian Journal of Chemistry, 31(9), 2083–2086. https://doi.org/10.14233/ajchem.2019.22112
Pachana, P. K., Rattanasak, U., Nuithitikul, K., Jitsangiam, P., & Chindaprasirt, P. (2021). Sustainable utilisation of water treatment residue as a porous geopolymer for iron removal from groundwater. https://doi.org/10.21203/rs.3.rs-702933/v1
Patel, H., & Vashi, R. T. (2012). Removal of Congo Red dye from its aqueous solution using natural coagulants. Journal of Saudi Chemical Society, 16(2), 131–136. https://doi.org/10.1016/j.jscs.2010.12.003
Rehn, G., Grey, C., Branneby, C., & Adlercreutz, P. (2013). Chitosan flocculation: An effective method for immobilization of E. coli for biocatalytic processes. Journal of Biotechnology, 165(2), 138–144. https://doi.org/10.1016/j.jbiotec.2013.03.014
Revathi, M., Saravanan, R., & Shanmugam, A. (2012). Production and characterization of chitinase from <i>Vibrio</i> species, a head waste of shrimp <i>Metapenaeus dobsonii</i> (Miers, 1878) and chitin of <i>Sepiella inermis</i> Orbigny, 1848. Advances in Bioscience and Biotechnology, 03(04), 392–397. https://doi.org/10.4236/abb.2012.34056
Richard, D. E., & Dwyer, D. F. (2001). Aerated Biofiltration for Simultaneous Removal of Iron and Polycyclic Aromatic Hydrocarbons from Groundwater. Water Environment Research, 73(6), 673–683. https://doi.org/10.2175/106143001X143411
Sahputra, R. (2021). Analisis Kandungan Besi pada Air Tanah Bansir Darat Pontianak Tenggara. QUANTUM: Jurnal Pembelajaran IPA Dan Aplikasinya, 1(1). https://doi.org/10.46368/qjpia.v1i1.313
Septhum, C., Rattanaphani, S., Bremner, J. B., & Rattanaphani, V. (2007). An adsorption study of Al(III) ions onto chitosan. Journal of Hazardous Materials, 148(1–2), 185–191. https://doi.org/10.1016/j.jhazmat.2007.02.024
Tokatlı, K., & Demirdöven, A. (2018). Optimization of chitin and chitosan production from shrimp wastes and characterization. Journal of Food Processing and Preservation, 42(2), e13494. https://doi.org/10.1111/jfpp.13494
Wu, Z.-B., Ni, W.-M., & Guan, B.-H. (2008). Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process. Journal of Hazardous Materials, 152(2), 757–764. https://doi.org/10.1016/j.jhazmat.2007.07.042
Yildiz, S., & Sevinç, S. (2018). Heavy Metal Adsorption by Dewatered Iron-Containing Waste Sludge. Ecological Chemistry and Engineering S, 25(3), 431–456. https://doi.org/10.1515/eces-2018-0030
Younes, I., & Rinaudo, M. (2015). Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13(3), 1133–1174. https://doi.org/10.3390/md13031133
Yuan, Y., Chesnutt, B. M., Haggard, W. O., & Bumgardner, J. D. (2011). Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials, 4(8), 1399–1416. https://doi.org/10.3390/ma4081399
Zou, X., Pan, J., Ou, H., Wang, X., Guan, W., Li, C., Yan, Y., & Duan, Y. (2011). Adsorptive removal of Cr(III) and Fe(III) from aqueous solution by chitosan/attapulgite composites: Equilibrium, thermodynamics and kinetics. Chemical Engineering Journal, 167(1), 112–121. https://doi.org/10.1016/j.cej.2010.12.009
Zulfikar, M. A., Setiyanto, H., Wahyuningrum, D., & Mukti, R. R. (2014). Peat Water Treatment using Chitosan-Silica Composite as an Adsorbent. International Journal of Environmental Research, 8(3). https://doi.org/10.22059/ijer.2014.763

Downloads

Published

2025-06-10

Issue

Section

Articles

How to Cite

Chitosan preparation from white shrimp shell (Litopenaeus vannamei) for Fe(III) removal from Pontianak municipal groundwater. (2025). Stannum : Jurnal Sains Dan Terapan Kimia, 7(1), 14-24. https://doi.org/10.33019/jstk.v7i1.5566