PRESTASI POMPA SENTRIFUGAL TIPE OVERHUNG UNTUK APLIKASI INDUSTRI DENGAN METODE REVERSE ENGINEERING DAN CFD

Authors

  • Mohamad Yamin Universitas Gunadarma
  • Rudi Irawan Universitas Gunadarma
  • Cokorda Prapti Mahandari Universitas Gunadarma
  • Rian Dwi Ariandi Universitas Gunadarma
  • Riyan Firmansyah Universitas Gunadarma
  • Muhammad Zidan Alfasha PT. Duraquipt Cemerlang
  • Suharto Suharto PT. Duraquipt Cemerlang

DOI:

https://doi.org/10.33019/jm.v11i1.5623

Keywords:

Centrifugal Pumps, Reverse Engineering, 3D Scanning, CFD, API610

Abstract

Indonesia faces various challenges in achieving net zero emissions, energy crises, and urgent agricultural irrigation needs. In this context, centrifugal pumps play a crucial role in various industrial applications and irrigation systems. However, performance curve data for pumps is often unavailable, particularly for older pumps or those with lost documentation. This study aims to develop new performance curves for centrifugal pumps using Reverse Engineering (RE) based on 3D scanning and Computational Fluid Dynamics (CFD) simulation. The process begins with geometric modeling of the pump using 3D scanning to obtain accurate data regarding the pump’s physical shape. The model is then used in CFD simulations with the k-epsilon (k-ε) turbulence model and SIMPLE method to analyze flow characteristics and pump performance. Simulation results show that the deviation in efficiency and power compared to existing experimental data is below 2%, with a mesh size of 0.00005 mm providing optimal results in terms of accuracy and computational efficiency. This research demonstrates that developing performance curves using RE and CFD methods can address issues of missing data and provide a solid foundation for design improvements and efficient operation of centrifugal pumps. The findings have the potential to enhance operational efficiency of pump systems and support environmental impact mitigation efforts through pump technology optimization.

Downloads

Download data is not yet available.

References

[1] K. Handayani and P. Anugrah, “Assessing the implications of net-zero emissions pathways: An analysis of the Indonesian power sector,” in 2021 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), Sep. 2021, pp. 270–275. doi: 10.1109/ICT-PEP53949.2021.9600954.
[2] D. Bordeasu, F. Dragan, I. Filip, I. Szeidert, and G. O. Tirian, “Estimation of Centrifugal Pump Efficiency at Variable Frequency for Irrigation Systems,” Sustainability, vol. 16, no. 10, Art. no. 10, Jan. 2024, doi: 10.3390/su16104134.
[3] Z. Lai, Q. Li, A. Zhao, W. Zhou, H. Xu, and D. Wu, “Improving Reliability of Pumps in Parallel Pump Systems Using Particle Swam Optimization Approach,” IEEE Access, vol. 8, pp. 58427–58434, 2020, doi: 10.1109/ACCESS.2020.2980396.
[4] A. S. V.K., U. S., P. S., and N. Hanigovszki, “An Energy Efficient Control Algorithm for Parallel Pumping Industrial Motor Drives System,” in 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Dec. 2018, pp. 1–6. doi: 10.1109/PEDES.2018.8707618.
[5] Z. Wang, J. Li, D. Hou, Y. Qiao, and M. Wu, “Research and application of wide and efficient hydraulic design in centrifugal pump,” J. Phys.: Conf. Ser., vol. 2707, no. 1, p. 012042, Feb. 2024, doi: 10.1088/1742-6596/2707/1/012042.
[6] 朱荣生, 陈一鸣, 安策, and 王秀礼, “Centrifugal pump performance curve fitting correction method,” CN110242589B, Jul. 31, 2020 [Online]. Available: https://patents.google.com/patent/CN110242589B/en
[7] G. A. Maria Castorino, L. Manservigi, S. Barbarelli, E. Losi, and M. Venturini, “Development and validation of a comprehensive methodology for predicting PAT performance curves,” Energy, vol. 274, p. 127366, Jul. 2023, doi: 10.1016/j.energy.2023.127366.
[8] J. Souček, E. Bílková, and P. Nowak, “Reverse engineering of pump as turbine for CFD analysis,” Acta Polytechnica, vol. 64, no. 1, Art. no. 1, Mar. 2024, doi: 10.14311/AP.2024.64.0052.
[9] M. Fathi, H. Alemi, M. Raisee, and A. Nourbakhsh, “Numerical investigation of axial force of a centrifugal pump in the reverse mode,” J. Phys.: Conf. Ser., vol. 2707, no. 1, p. 012047, Feb. 2024, doi: 10.1088/1742-6596/2707/1/012047.
[10] W. Li, “Effects of interface model on performance of a vortex pump in CFD simulations,” International Journal of Fluid Engineering, vol. 1, no. 1, Mar. 2024, doi: 10.1063/5.0196213.
[11] Zhengsu C., Yaguang H., Ping X., Qifeng J., Xipeng L. U. O., and Kun S., “Influence of Particle Properties on the Performance and Wear of Centrifugal Pumps Based on CFD-DPM,” xhdxxbzrkxb, vol. 43, no. 1, pp. 87–96, 102, Jan. 2024, doi: 10.12198/j.issn.1673-159X.4892.
[12] E. Pagayona and J. Honra, “Multi-Criteria Response Surface Optimization of Centrifugal Pump Performance Using CFD for Wastewater Application,” Modelling, vol. 5, no. 3, Art. no. 3, Sep. 2024, doi: 10.3390/modelling5030036.
[13] J. Dong and W. Li, “Numerical Simulation of Centrifugal Pump Cavitation Based on ANSYS,” J. Phys.: Conf. Ser., vol. 2450, no. 1, p. 012031, Mar. 2023, doi: 10.1088/1742-6596/2450/1/012031.
[14] X. Sun et al., “Experimental Analysis of Radial Centrifugal Pump Shutdown,” FDMP, vol. 20, no. 4, pp. 725–737, 2024, doi: 10.32604/fdmp.2023.045541.
[15] R. X. Perez, “Evaluating Centrifugal Pumps in Petrochemical Applications,” in Maintenance, Reliability and Troubleshooting in Rotating Machinery, John Wiley & Sons, Ltd, 2022, pp. 87–140. doi: 10.1002/9781119631668.ch6.
[16] L. Achour, M. Specklin, M. Asuaje, S. Kouidri, and I. Belaidi, “Energy loss analysis of volute centrifugal pump handling non-Newtonian emulsions through entropy production theory,” Mechanics & Industry, vol. 25, p. 13, 2024, doi: 10.1051/meca/2024009.
[17] P. Raut, R. Rathod, R. Tidke, N. Rathod, S. Rokade, and Prof. N. Kulkarni, “Design and CFD Analysis of Centrifugal Pump,” IJRASET, vol. 10, no. 12, pp. 638–646, Dec. 2022, doi: 10.22214/ijraset.2022.47958.
[18] Durvesh, R. K. Singh, and M. K, “Performance Enhancement and Numerical Simulation of Inter-Stage of Multistage Centrifugal Pump by varying number of blades Using CFD,” May 29, 2023. doi: 10.21203/rs.3.rs-2984996/v1.
[19] J. Lu, Y. Zhou, Y. Ge, J. Liu, and C. Zhang, “Research into Prediction Method for Pressure Pulsations in a Centrifugal Pump Based on Variational Mode Decomposition–Particle Swarm Optimization and Hybrid Deep Learning Models,” Sensors, vol. 24, no. 13, Art. no. 13, Jan. 2024, doi: 10.3390/s24134196.
[20] V. V. Ghatbandhe, P. P. Mahajan, R. H. Gavhane, and A. Sharma, “Numerical Estimation and Validation of Pressure Pulsation in Centrifugal Pump Discharge Pipes,” in Fluid Mechanics and Fluid Power, Volume 3, K. M. Singh, S. Dutta, S. Subudhi, and N. K. Singh, Eds., Singapore: Springer Nature, 2024, pp. 519–531. doi: 10.1007/978-981-99-6343-0_40.
[21] X. Liu, J. Fu, J. Yang, D. Yin, Z. Zhou, and H. Li, “Numerical simulation research on multiphase flow of aviation centrifugal pump based on OpenFOAM,” Chinese Journal of Aeronautics, vol. 37, no. 4, pp. 256–275, Apr. 2024, doi: 10.1016/j.cja.2023.11.016.
[22] A. F. S. A. Hassan, S. Saleh, and A. Hashish, “Simulation Based Design Tool for Radial Impellers of Centrifugal Pumps,” Mar. 26, 2024. doi: 10.21203/rs.3.rs-3948294/v1.
[23] Prof. Nitin Deshmukh and Mr. Mohammed Ishak Shaikh, “Design, Analysis and Optimization of Centrifugal Pump Impeller using CFD,” IJARSCT, pp. 466–480, Aug. 2024, doi: 10.48175/IJARSCT-19358.
[24] A. A. Alubokin, B. Gao, Z. Ning, L. Yan, J. Jiang, and E. K. Quaye, “Numerical simulation of complex flow structures and pressure fluctuation at rotating stall conditions within a centrifugal pump,” Energy Science & Engineering, vol. 10, no. 7, pp. 2146–2169, 2022, doi: 10.1002/ese3.1123.
[25] H. Wang, B. Long, C. Wang, C. Han, and L. Li, “Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance,” Energies, vol. 13, no. 7, Art. no. 7, Jan. 2020, doi: 10.3390/en13071628.
[26] L. Dong, Y. Zhang, Z. Ge, Cui. Dai, and J. Guo, “Study and Verification of Large-Scale Parallel Mesh Generation Algorithm for Centrifugal Pump,” Mathematical Problems in Engineering, vol. 2020, no. 1, p. 1956852, 2020, doi: 10.1155/2020/1956852.
[27] J. Cardenas-Gutierrez, G. Valencia, and J. Forero, “Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry,” Journal of Engineering Science and Technology Review, vol. 13, pp. 8–14, Jan. 2020, doi: 10.25103/jestr.133.02.

Published

2025-05-12

How to Cite

PRESTASI POMPA SENTRIFUGAL TIPE OVERHUNG UNTUK APLIKASI INDUSTRI DENGAN METODE REVERSE ENGINEERING DAN CFD. (2025). Machine : Jurnal Teknik Mesin, 11(1), 64-72. https://doi.org/10.33019/jm.v11i1.5623

Share

Similar Articles

You may also start an advanced similarity search for this article.