Activated Carbon from Sugarcane (Saccharum officinarum L.) Bagasse for Removal Ca2+ and Mg2+ Ion from Well Water

  • Ira Tyas Kurniasari Universitas Kristen Satya Wacana
  • Cucun Alep Riyanto Department of Chemistry, Universitas Kristen Satya Wacana, Indonesia https://orcid.org/0000-0003-3020-367X
  • Yohanes Martono Universitas Kristen Satya Wacana

Abstract

Humans need water with good quality to fulfill their needs. Water with high hardness content will have a bad impact if consumed continuously, so the adsorption method is carried out to reduce the concentration of Ca2+ and Mg2+ ions. The adsorption process uses sugarcane bagasse activated carbon (SBAC) and the tested water sample is well water in District Jati, Kudus. Synthesis of  SBAC was conducted with H3PO4 30% as an activator at an impregnation ratio of 1:5 (w/w) at temperature 700°C. The FTIR result showed that SBAC contains O-H, C-H, C=C, C≡C, and C-O as functional groups. Analysis result with the XRD instrument showed that the microstructure of SBAC that is formed is turbostatic structure and amorphous. Modeling isotherm suitable for SBAC adsorption on Ca2+ ions is Langmuir isotherm where the R2 value is 0.9134 which shows that the adsorption process occurs chemically and monolayer. Modeling isotherm suitable for SBAC adsorption on Mg2+ ions is Elovich isotherm where the R2 value is 0.8638 which means that the adsorption process is multilayer and adsorption in non-ideal conditions. Modeling kinetics suitable for SBAC adsorption on  Ca2+ and Mg2+ ions is Pseudo Orde 2 where the R2 value is 0.9395 and 0.7274. Percent efficiency value of sugarcane activated carbon adsorption of Ca2+ dan Mg2+ ions on District Jati, Kudus well water is 14.44% and 8.94% and 40 minutes stirring time.

Downloads

Download data is not yet available.

References

Adib, M. R. M., Suraya, W. M. S. W., Rafidah, H., Amirza, A. R. M., Attahirah, M. H. M. N., Hanil, M. S. N. Q., & Adnan,

M. S. (2016). Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon. IOP Conference. https://doi.org/10.1088/1757-899X/136/1/012061

Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017, 11. https://doi.org/10.1155/2017/3039817

Darmawan, S., Syafii, W., Wistara, N. J., Maddu, A., & Pari, G. (2015). Kajian Struktur Arang-Pirolisis, Arang-Hidro dan Karbon Aktif dari Kayu Acacia mangium Willd. Menggunakan Difraksi Sinar-X. Jurnal Penelitian Hasil Hutan, 33(2), 81–92.

Dinora, G. Q., & Purnomo, A. (2013). Penurunan Kandungan Zat Kapur dalam Air Tanah dengan Menggunakan Media Zeolit Alam dan Karbon Aktif Menjadi Air Bersih. Jurnal Teknik POMITS, 2(2).

Firdiyono, F., Handayani, M., Sulistiyono, E., & Antoro, I. D. (2012). Percobaan Pendahuluan Perbandingan Daya Serap Unsur Minor Dalam Larutan Natrium Silikat. Majalah Metalurgi, 27, 15–26.

Fithriatusshalihah, R. (2016). Pengaruh Penambahan Serat Ampas Tebu ( Saccharum officinarum L.) Terhadap Kekuatan Tekan Resin Komposit Nanofil. Universitas Muhammadiyah Surakarta.

Hadoun, H., Sadaoui, Z., Souami, N., Sahel, D., & Toumert, I. (2013). Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation. Applied Surface Science. https://doi.org/10.1016/j.apsusc.2013.04.054

Heidarpour, M., Mousavi, S., & Majid, A. (2014). Removal of calcium and magnesium by activated carbons produced from agricultural wastes. ResearchGate, (July), 202–208. Retrieved from https://www.researchgate.net/publication/288465572

Hidayati, A. S. D. S. N., Kurniawan, S., Restu, N. W., & Ismuyanto, B. (2016). Potensi Ampas Tebu Sebagai Alternatif Bahan Baku Pembuatan Karbon Aktif. NATURAL B, 3(4).

Holle, R. B., Wuntu, A. D., & Sangi, M. S. (2013). Kinetika Adsorpsi Gas Benzena Pada Karbon Aktif Tempurung Kelapa. JURNAL MIPA UNSRAT ONLINE, 2(2), 100–104.

Hutapea, E. M., Iwantono, Farma, R., Saktioto, & Awitdrus. (2017). Pembuatan dan Karakterisasi Karbon aktif dari Bambu Betung (Dendrocalamus asper) dengan Aktivasi KOH Berbantuan Gelombang Mikro. Jurnal Komunikasi Fisika Indonesia, 14(October).

Jeyakumar, R. P. S., & Chandrasekaran, V. (2014). Adsorption of Lead (II) Ions by Activated Carbons Prepared from Marine Green Algae: Equilibrium and Kinetics Studies. Int J Ind Chem, 5(10). https://doi.org/10.1007/s40090-014-0010-z

Kurniawati, P., Wiyantoko, B., Kurniawan, A., & Purbaningtias, T. E. (2013). Kinetic study of Cr (VI) Adsorption on Hydrotalcite Mg/Al with Molar Ratio 2:1. ResearchGate, 13(July 2016). https://doi.org/10.20885/eksakta.vol13.iss1-2.art2

Maulana, I., Iryani, A., & Nashrianto, H. (2017). Pemanfaatan Ampas Teh Sebagai Adsorben Ion Kalsium (Ca 2+) dan Ion Magnesium (Mg 2+) Dalam Air Sadah. ResearchGate, (June), 1–7.

Nababan, C. M., Irianty, R. S., & Yelmida. (2017). Model Kesetimbangan Adsorpsi Zat Warna Direct Brown menggunakan Limbah Padat Pulp dan Kertas (Dregs) dengan Proses Batch. Jom FTEKNIK, 4, 1–7.

Nadeem, U. (2016). Chromium Adsorption Kinetics from Aqueous Solutions Using Chitosan. ResearchGate, (February).

Nurbaeti, L., Prasetya, A. T., & Kusumastuti, E. (2018). Arang Ampas Tebu (Bagasse) Teraktivasi Asam Klorida sebagai Penurun Kadar Ion H2 PO4-. Indonesian Journal of Chemical Science, 7(2).

Nurhayati, I., & Sutrisno, J. (2014). Pemanfaatan Limbah Ampas Tebu Sebagai Penyerap Logam Berat Cu. WAHANA, 63.

Nurhayati, I., Sutrisno, J., & Zainudin, M. S. (2018). Pengaruh Konsentrasi dan Waktu Aktivasi Terhadap Karakteristik Karbon Aktif Ampas Tebu dan Fungsinya Sebagai Adsorben pada Limbah Cair Laboratorium. Jurnal Teknik WAKTU, 16, 62–71.

Rolence, C., Machunda, R. L., & Njau, K. N. (2014). Water Hardness Removal by Coconut Shell Activated Carbon. East Asian Science Technology and Society an International Journal, (August). https://doi.org/10.11648/j.ijsts.20140205.11

Sahara, E., Sulihingtyas, W. D., & Mahardika, I. P. A. S. (2012). Pembuatan dan Karakterisasi Arang Aktif dari Batang Tanaman Gumitir (Tageter erecta) yang Diaktivasi dengan H3PO4, 1–9.

Sepehr, M. N., Zarrabi, M., Kazemian, H., Amrane, A., Yaghmaian, K., & Ghaffari, H. R. (2013). Removal of Hardness Agents, Calcium and Magnesium, by Natural and Alkaline Modified Pumice Stones in Single and Binary Systems. HAL.

SNI. (2004). SNI 06-6989.12-2004. Indonesia.

Wibowo, S., Syafi, W., & Pari, G. (2011). Karakterisasi Permukaan Arang Aktif Tempurung Biji Nyamplung. MAKARA, 15(1), 17–24.

Wijaya, D. R. P., Martono, Y., & Riyanto, C. A. (2018). Synthesis and Characterization of Nano Activated Carbon Tea

Waste ( Camellia sinensis L .) Viewed from the Content and Ratio of Orthophosphoric Acid. Indonesian Journal of Chemical Research, 3(2), 12–21. https://doi.org/10.20885/ijcr.vol3.iss2.art2

Yorgun, S., & Yıldız, D. (2015). Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers, 53, 122–131. https://doi.org/10.1016/j.jtice.2015.02.032

Zulfikar, M. A., Widiansyah, T., & Setiyanto, H. (2016). Studi Kinetika Adsorpsi Asam Humus dari Air Gambut Menggunakan Selulosa Jerami Padi. In Prosiding SNSTL I 2014.

Published
2020-10-31
How to Cite
Kurniasari, I., Riyanto, C., & Martono, Y. (2020). Activated Carbon from Sugarcane (Saccharum officinarum L.) Bagasse for Removal Ca2+ and Mg2+ Ion from Well Water. Stannum : Jurnal Sains Dan Terapan Kimia, 2(2), 57-67. https://doi.org/10.33019/jstk.v2i2.1877
Section
Articles
Abstract viewed = 198 times
PDF (BAHASA INDONESIA) downloaded = 274 times