PENINGKATAN BIOMASSA NANNOCHLOROPSIS OCULATA MELALUI OPTIMASI KULTUR PADA SKALA LABORATORIUM DAN SKALA MENENGAH

Authors

  • Maestro Munru IPB University Author
  • Yola Wulandari IPB University Bogor Author
  • Herni Iman Sari Universitas Bengkulu Author
  • Novita nanda Syafitri Universitas Bengkulu Author
  • Alfiqi Maulana Dinas Perikanan Kabupaten Kaur, Bengkulu Author
  • Trifajriyah Lutea Ayu Universitas Diponegoro Author

DOI:

https://doi.org/10.33019/11765564

Keywords:

Biomass, Culture, Nannochloropsis oculata

Abstract

Nannochloropsis oculata, a versatile microalga, holds immense potential in the field of marine biotechnology. Its benefits are far-reaching, particularly in sectors like aquaculture. To fully exploit this potential, effective strategies for increasing its biomass are essential. This study aims to determine the technique of laboratory-scale Nannochloropsis Oculata phytoplankton culture, as well as the phases of its growth and development. The culture process, spanning from 200 ml to 40 L, was Meticulously observed and documented. Daily observations were made from the first day of culture until the research was completed, using a haemacytometer on a binocular microscope with a magnification of 400. The observation results of Nannochloropsis oculata growth showed varying dynamics from the first to the fifth day. Overall, no significant growth was observed; however, fluctuations were noted in each phase of the growth period during the study.  In 200 ml and 1 L volume cultures, Nannochloropsis oculata showed a short lag phase (1-2 days) followed by a significant increase in biomass up to 11 million cells/ml in the exponential phase (days 3 to 5). Controlled and stable conditions at small volumes favored cell adaptation and optimal replication. In contrast, the 15 L volume culture showed a more extended lag phase, indicating sensitivity to environmental changes. The most significant anomaly occurred in the 40 L culture, where a drastic decrease in biomass occurred after the second to third day, signaling culture failure. Microscopic analysis confirmed protozoan contamination as the etiological agent, which was assumed to originate from the surrounding environment due to exposure to the culture medium.

References

Arfah, Y., Cokrowati, N., & Mukhlis, A. 2019. Pengaruh Konsentrasi Pupuk Urea Terhadap Pertumbuhan Populasi Sel Nannochloropsis sp. Jurnal Kelautan, Vol 12 (1): 45-51.
Arifah, S. 2014. Studi Kemampuan Nannochloropsis Sp. Dan Chlorella Sp. Sebagai Agen Bioremediasi Logam Berat Merkuri (Hg) Dan Pengaruhnya Terhadap Pertumbuhan. Skripsi. Fakultas Perikanan Dan Kelautan. Universitas Airlangga. Surabaya.
Bandyopadhyay, D., & Biswas, H. (2021). Impacts of variable nutrient stoichiometry (N, Si and P) on a coastal phytoplankton community from the SW Bay of Bengal, India. European Journal of Phycology, 56(3), 273-288.
Banerjee, S., Hew, W. E., Khatoon, H., Shariff, M., & Yusoff, F. M. 2011. Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. African Journal of Biotechnology Vol. 10(8), pp. 1375-1383.
Cahyonugroho, O. H., Fifin, C., Hidayah, E. N., Rosariawari, F., & Novembrianto, R. (2025, February). The ability of microalgae Nannochloropsis oculata to remove lead (Pb) from artificial wastewater. In IOP Conference Series: Earth and Environmental Science (Vol. 1454, No. 1, p. 012019). IOP Publishing.
Campaña-Torres. A., Martínez-Córdova, L.R., Martínez-Porchas, M., López-Elías, J.A., & Porchas-Cornejo, M. A. Productive Response 2012. of Nannochloropsis oculata, Cultured in Different Media and Their Efficiency as Food for The Rotifer Brachionus rotundiformis. International Journal of Experimental Botany, 81: 45-50.
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., & Litchman, E. (2016). Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnology and Oceanography, 61(4), 1232-1244.
Eka putri. 2019. kualitas pasta nannochloropsis sp. isolat lampung mangrove center berdasarkan uji kandungan karbohidrat pada kultur skala intermediet. skripsi. universitas lampung. Bandar lampung.
Fernández-González, C., Tarran, G. A., Schuback, N., Woodward, E. M. S., Arístegui, J., & Marañón, E. (2022). Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Communications Biology, 5(1), 1035.
Fitri Nilam.2013. Studi eksperimental fotobioreaktor photovoltaic untuk produksi mikroalga (nannochloropsis oculata). Jurnal bioproses komoditas tropis.vol.1 no. 2.
Guedes, A.C., & Malcata, F.X. (2012). Nutritional value and uses of microalgae in aquaculture. Aquaculture, 437, 51–57.
Harsanto, Soni. 2009. Analisis Asam Lemak Mikroalga Nannochloropsis oculata. Thesis. Surabaya: Jurusan Kimia FMIPA ITS.
Jati, F. Hutabarat, J. dan Herawati, V.E. 2012. Pengaruh Penggunaan Dua Jenis Media Kultur Teknis yang Berbeda Terhadap Pola Pertumbuhan, Kandungan Protein dan Asam Lemak Omega 3 EPA (Chaetoceros gracilis). Journal Of Aquaculture Management and Technology. Vol.1 No.1:221-235.
Joglar, V., Prieto, A., Barber-Lluch, E., Hernández-Ruiz, M., Fernández, E., & Teira, E. (2020). Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system. Biogeosciences, 17(10), 2807-2823.
Khadim, H. J., Abdelkareem, H. N., Hussein, H. A. M., & Mohamed, A. I. (2024). Growth Kinetic and Biodiesel Lipid Extraction of Nannochloropsis oculata Microalgae in a Photobioreactor under Varying Salinity Conditions. Journal of Ecological Engineering, 25(11), 46-54.
Khoeyi, Z.A., Seyfabadi, J., & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae Nannochloropsis oculata. Journal of Applied Phycology, 24(3), 313–320.
Kim, J., Armin, G., & Inomura, K. (2022). Saturating relationship between phytoplankton growth rate and nutrient concentration explained by macromolecular allocation. Current Research in Microbial Sciences, 3, 100167.
Liu, M., Yu, L., Zheng, J., Shao, S., Pan, Y., Hu, H., ... & Liu, J. (2024). Turning the industrially relevant marine alga Nannochloropsis red: one move for multifaceted benefits. New Phytologist, 244(4), 1467-1481.
Malakootian, M., Hatami, B., Dowlatshahi, S., & Rajabizadeh, A. (2015). Optimization of culture media for lipid production by Nannochloropsis oculata for Biodiesel production,2(3), 141-147.‎
Marline, A. 2014. Pengaruh Perbedaan Jenis Pupuk Terhadap Pertumbuhan Nannochloropsis Sp. Dilihat Dari Kepadatan Sel Dan Klorofil Α Pada Skala Semi Massal. Diponegoro Journal Of Maquares . Vol 3. No 2 : 102-108.
Marzetz, V., Spijkerman, E., Striebel, M., & Wacker, A. (2020). Phytoplankton community responses to interactions between light intensity, light variations, and phosphorus supply. Frontiers in Environmental Science, 8, 539733.
Moazami, N. Ranjbar, R. Ashori, A. Tangestani, M. and A.S. Nejad, , 2011. Biomass And Lipid Productivities Of Marine Microalgae Isolated From The Persian Gulf And The Qenshm Island. Journale Biomass and Bioenergy 35, 1935-1939.
Neun, S., Hintz, N. H., Schröder, M., & Striebel, M. (2022). Phytoplankton response to different light colors and fluctuation frequencies. Frontiers in Marine Science, 9, 824624.
Prasetyo, L. D., Supriyantini, E., & Sedjati, S. (2022). Pertumbuhan mikroalga Chaetoceros calcitrans pada kultivasi dengan intensitas cahaya berbeda. Buletin Oseanografi Marina, 11(1), 59-70.
Pujiono AE. 2013. Pertumbuhan Tetraselmis chuii pada Media Air Laut dengan Intensitas Cahaya, Lama Penyinaran dan Jumlah Inokulan yang Berbeda pada Skala Laboratorium. Skripsi. Universitas Jember. Jember.
Ra, C. H., Kang, C. H., Jung, J. H., Jeong, G. T., & Kim, S. K. (2016). Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource technology, 212, 254-261.
Safia, W. O., Budiyanti, B., Sumitro, S., Yulisnawati, Y., & Sukendar, W. (2023). Pengaruh Interval Waktu Pencahayaan Yang Berbeda Pada Kultur Nannochloropsis Sp Di Laboratorium. Jurnal Akuakultura Universitas Teuku Umar, 7(2), 38-41.
Sinaga, L., Putriningtias, A., & Komariyah, S. (2021). Pengaruh Intensitas Cahaya Terhadap Pertumbuhan Nannochloropsis Sp. Jurnal Akuakultura Universitas Teuku Umar, 4(2), 31-37.
Solikhah Amalia. 2011. Pengaruh Pemberian Jenis Pupuk yang Berbeda terhadap Laju Pertumbuhan Populasi dan Kadar Lemak Nannochloropsis oculata. Skripsi.Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Negeri Surabaya. Surabaya.
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of bioscience and bioengineering, 101(2), 87-96.
Sung, MG., Han, JI., Lee, B.. (2018). Wavelength shift strategy to enhance lipid productivity of Nannochloropsis gaditana. Biotechnol Biofuels, 11(70), 1-12.
Wahyuni N, Masithah ED, Soemarjati W, Suciyono, Ulkhaq MF. 2018. Pola Pertumbuhan Mikroalga Spirulina sp. Skala Laboratorium yang dikultur Menggunakan Wadah yang Berbeda. Majalah Ilmiah Bahari Jogja, 16(2): 89-97.
Wang, G., He, Y., Chen, Z., Liu, H., Wang, Q., Peng, C., & Zhang, J. (2025). Corrigendum: A lag bloom pattern of phytoplankton after freshwater input events revealed by daily samples during summer in Qinhuangdao coastal water, China. Frontiers in Microbiology, 16, 1601738.
Wang, Q., Lyu, Z., Omar, S., Cornell, S., Yang, Z., & Montagnes, D. J. (2019). Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology's “canonical” activation energies. Limnology and Oceanography, 64(3), 1172-1185.
Widihastuti, A., Satria, B., Yulianti, R., & Tjajaningsih, W. 2022. Growth Rate of Microalgae Nannochloropsis oculata at Different Culture Scales. Journal of Aquaculture Science, Vol 7(2): 74-82.
Widyaningrum, N. F., Susilo B., Hermanto, M.. B.2013. Studi Eksperimental Fotobioreaktor Photovoltaicuntuk Produksi Mikroalga (Nannochloropsis oculata). Jurnal Bioproses Komoditas Tropis.Vol.1 (2): 30-38.
Ye, Y., Liu, M., Yu, L., Sun, H., & Liu, J. (2024). Nannochloropsis as an emerging algal chassis for light-driven synthesis of lipids and high-value products. Marine Drugs, 22(2), 54.
Zanella, L., & Vianello, F. (2020). Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. Journal of Functional Foods, 68, 103919.

Downloads

Published

08.10.2025

How to Cite

Munru, M., Wulandari, Y., Sari, H. I. ., Syafitri, N. nanda ., Maulana, A. ., & Ayu, T. L. . (2025). PENINGKATAN BIOMASSA NANNOCHLOROPSIS OCULATA MELALUI OPTIMASI KULTUR PADA SKALA LABORATORIUM DAN SKALA MENENGAH. Journal of Aquatropica Asia, 10(2), 132-138. https://doi.org/10.33019/11765564