PERHITUNGAN DISTRIBUSI TEGANGAN SISA PENGELASAN SAMBUNGAN–T PADA INSTALASI PIPA

  • Antonius Wahyu Cahyo Purnomo Akademi Tehnik Mesin Industri (ATMI) Cikarang

Abstract

Abstrak

Studi tentang pemodelan dan perhitungan tegangan sisa akibat pengelasan pada sambungan-T pada instalasi perpipaan. Model perhitungan diambil material standard las dengan data koefisien konduksi panas, k =13,5x106 W/ °K.m2, dan angka muai termal, α = 13x10-6 mm/mm. Tegangan sisa dihitung berdasarkan iterasi regangan yang timbul akibat distribusi suhu selama pendinginan dari suhu pengelasan menuju temperatur ruang dengan simulasi suhu pada daerah las sebesar 1200 °C. Perhitungan berdasarkan metode elemen hingga dengan program ANSYS 5.4. model 3 dimensi. Distribusi tegangan menunjukkan harga tegangan total pada bahan las berkisar antara 300 sampai dengan 400 MPa, sedangkan pada material pipa antara 30 sampai 200 MPa. Konsentrasi tegangan dapat diamati pada sambungan pengelasan yang terjadi pada bagian dalam dan permukaan sambungan dengan tegangan maksimum sekitar 440 MPa. Hasil perhitungan ini disimpulkan bahwa komputasi perhitungan sisa dapat memprediksi harga rata-rata maupun harga maksimum tegangan sisa yang terjadi akibat konsentrasi tegangan.

Downloads

Download data is not yet available.

References

[1] Frank Stasa. 2003. Carbon Partitioning into Austenite after Martensite Transformation. Acta Material, 51, 2611-2622.
[2] ANONIM. Manual User ANSYS 5.4. ANSYS Incorporated, Pittsburgh, 1998.
[3] Speer, J. 2005. The “Quenching & Partitioning” Process: background & Precent Progress. Material Reseach Vol.8. 4 . 417-423.
[4] Santofimia, M.J., & Zhao, L. 2008. Characterization of the Microstrukture Obtained by the Quenching & Partitioning Process in Low-Carbon Steels. Material Characterization 59. 1758-1764.
[5] Santofimia, M.J., & Zhao, L. 2008. Microstructural Evolution of Low carbon Steel During Aplication oq Quenching Partitioning Heat Treatment after Austenization. The minerals, Metal, & Material Society & ASM Internatuonal.
[6] Li Wang. & Speer, J. 2013. Quenching and Partitioning Steel Heat Treatment. Metal and Microstructur 2. 268-281.
[7] Yang Zheng Zeng, Kaiming Wu, & Feng Hu. 2012. Effect of Partitioning of Quenching Partitioning Tempering Process on Microstructure and Hardness in High Carbon Steel. Advanced Materials Research. vols. 538-541. 1053-1056.
[8] Speer, J., Matlock, D. K., Cooman, B. D., & Schroth, J. 2003. Carbon partitioning into austenite after martensite transformation. Acta Material 51(9), 2611-2622.
[9] Pastore, E., & De Negri, S. 2012. Experimental investigation on low-carbon quenched and partitioned steel. La Metallurgia Italiana - n. 9.
[10] Thelning, Karl . E. 1984. Steel and Its Heat Treatment. Bofors Handbook. Butterworths, Boston.
[11] Leslie & William. 1981. The Physical Metallurgy of Steels, Mc graw Hill, Tokyo.
[12] ASM Handbook. 2004. Metallography and Microstructure. Volume 9, ASM International.
[13] ASM Handbook. 2004. Alloy Phase Diagram. Volume 3, ASM International.
[14] ASM Handbook. 2004. Heat Treating. Volume 4, ASM International.
[15] Qamar, S.Z. August 2007. Heat treatment of a hot-work die steel. International Scientific Journal, Volume 28.
[16] Attaullah, Arain. 1999. Heat Treatment and Toughness Behavior of Tool Steel (D2 and H13) for Cutting Blade, University of Toronto.
Published
2016-07-01
How to Cite
Cahyo Purnomo, A. (2016). PERHITUNGAN DISTRIBUSI TEGANGAN SISA PENGELASAN SAMBUNGAN–T PADA INSTALASI PIPA. Machine : Jurnal Teknik Mesin, 2(2), 11-16. Retrieved from https://journal.ubb.ac.id/machine/article/view/479
Abstract viewed = 750 times
PDF (Bahasa Indonesia) downloaded = 466 times