Phytochemical Analysis and Antioxidant Activity of Acetone Extract from Moringa oleifera Leaves
DOI:
https://doi.org/10.33019/nqv16v61Keywords:
Moringa oleifera; acetone extract; phytochemical screening; antioxidant activity; South LampungAbstract
Indonesia’s rich biodiversity includes Moringa oleifera, widely used in traditional medicine. However, environmental factors such as climate, soil, and agronomic practices can influence the phytochemical composition and bioactivity of its leaves. This study aimed to investigate the phytochemical profile and antioxidant activity of acetone extracts of M. oleifera leaves sourced from South Lampung. Leaves were air-dried, powdered, and extracted via maceration in acetone. Phytochemical screening employed standard reagents (Dragendorff’s and Mayer’s for alkaloids; Mg and HCl for flavonoids; Liebermann–Burchard for steroids and triterpenoids; FeCl₃ for tannins; foam test with 2 N HCl for saponins). Antioxidant capacity was assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Phytochemical screening revealed the presence of alkaloids, flavonoids, steroids, triterpenoids, and tannins, while saponins were not detected. In the DPPH assay, percentage inhibition increased with concentratio, yielding an IC₅₀ of approximately 209.4 ppm. This relatively high IC₅₀ indicates weak radical-scavenging activity under the present conditions. The findings provide the first detailed report of phytochemical constituents and DPPH-based antioxidant capacity for acetone extracts of M. oleifera leaves from South Lampung. Although secondary metabolites with known bioactivities were detected, the weak DPPH scavenging suggests that acetone may not optimally extract the most potent antioxidant compounds or that local growth conditions yield lower phenolic/flavonoid concentrations.Downloads
Download data is not yet available.
References
Dani, B. Y., Wahidah B. F., & Syaifudin, A. (2019). Etnobotani Tanaman Kelor (Moringa oleifera Lam.) di Desa Kedungbulus Gembong Pati. Al-Hayat J. Biol. Appl. Biol., vol. 2, no. 2, p. 44, 2019, doi: 10.21580/ah.v2i2.4659
Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodivesity, 18(11), e2100345. https://doi.org/10.1002/cbdv.202100345
Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Razis, A.F.A., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11:1158198. https://doi.org/10.3389/fchem.2023.1158198
Sabindo N.H., Yatim R.M., & Ponnuraj K.T. (2024). Phytochemical composition of Clinacanthus nutans based on factors of environment, genetics and postharvest processes: A review, BioMedicine, 14(2).1. http://doi.org/10.37796/2211-8039.1451
Gulcin, İ., & Alwasel, S.H. (2023). DPPH Radical Scavenging Assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
Meigaria, K.M., Mudianta, W., & Martiningsih, N.W. (2016). Skrining Fitokimia Dan Uji Aktivitas Antioksidan Ekstrak Aseton Daun Kelor (Moringa Oleifera), J. Wahana Mat. dan Sains, 10(2), 1–11. https://doi.org/10.23887/wms.v10i2.12659
Chis, A., Noubissi, P.A., Pop, O.L., Muresan, C.I., Tagne M.A.K., Kamgang, R., Fodor, A., Sitar-Taut, A.V., Cozma, A., Orasan, O.H., Heghes, S.C., Vulturar, R., & Suharoschi, R. (2024). Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. Plants, 13(1), 20. https://doi.org/10.3390/plants13010020
Setyawaty, R., Aptuning, R.B., & Dewanto, D. (2020). Preliminary Studies on the Content of Phytochemical Compounds On Skin of Salak Fruit (Salacca zalacca). Pharmaceutical Journal of Indonesia. 6(1), 1–6. https://doi.org/10.21776/ub.pji.2020.006.01.1
Sriyanti, C., Siregar, T.N., Mudatsir., & Gani, A. (2022). Preliminary Phytochemical Screening and Infra-Radiation Test of Crude the Leaves of Nothophanax scutellarium Merr., Moringa oleifera and Piper betle L. Research Journal of Pharmacy and Technology, 15(4). 1805-0. https://doi.org/ 10.52711/0974-360X.2022.00303
Li, L.H., Dutkiewicz, E.P., Huang Y.C., Zhou, H.B., & Hsu, C.C. (2019). Analytical methods for cholesterol quantification. Journal of Food and Drug Analysis, 27(2),375-386, https://doi.org/10.1016/j.jfda.2018.09.001.
Lestari, Y., Permatasari, S., & Oktasari, A. (2021). Antioxidant Activity Testing of Extract Kweni Peel (Mangifera odorata Griff). Indonesian Journal of Chemistry and Environment, 3(2), 11-20. https://doi.org/10.21831/ijce.v3i2.43508.
Syarifah, A.L., Retnowati, R., & Soebiantoro. (2019). Characterization of Secondary Metabolites Profile of Flavonoid from Salam Leaves (Eugenia polyantha) Using TLC and UV Spectrophotometry. Pharmaceutical Sciences and Research, 6(3), 4. https://doi.org?/0.7454/psr.v6i3.4219
Pardede, A., Manjang, Y., & Efdi, M. (2013). Skrining Fitokimia Ekstrak Metanol dari Kulit Batang Manggis (Garcinia cymosa). Media SainS, 6(2). 60-66.
Nakanishi, I., Shoji Y., Ohkubo, K., Fukuhara, K., Ozawa, T., Matsumoto, K., & Fukuzumi, S. (2021) Effects of reaction environments on radical-scavenging mechanisms of ascorbic acid, Journal of Clinical Biochemistry and Nutrition, 68(2), 116-122, https://doi.org/10.3164/jcbn.20-147
Carmona, Y., García-Moreno, M.v., José, I., & Carmelo, B.G. (2014). Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products. Food Chemistry. 165. 198–204. https://doi.org/10.1016/j.foodchem.2014.05.106
Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodivesity, 18(11), e2100345. https://doi.org/10.1002/cbdv.202100345
Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Razis, A.F.A., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11:1158198. https://doi.org/10.3389/fchem.2023.1158198
Sabindo N.H., Yatim R.M., & Ponnuraj K.T. (2024). Phytochemical composition of Clinacanthus nutans based on factors of environment, genetics and postharvest processes: A review, BioMedicine, 14(2).1. http://doi.org/10.37796/2211-8039.1451
Gulcin, İ., & Alwasel, S.H. (2023). DPPH Radical Scavenging Assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
Meigaria, K.M., Mudianta, W., & Martiningsih, N.W. (2016). Skrining Fitokimia Dan Uji Aktivitas Antioksidan Ekstrak Aseton Daun Kelor (Moringa Oleifera), J. Wahana Mat. dan Sains, 10(2), 1–11. https://doi.org/10.23887/wms.v10i2.12659
Chis, A., Noubissi, P.A., Pop, O.L., Muresan, C.I., Tagne M.A.K., Kamgang, R., Fodor, A., Sitar-Taut, A.V., Cozma, A., Orasan, O.H., Heghes, S.C., Vulturar, R., & Suharoschi, R. (2024). Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. Plants, 13(1), 20. https://doi.org/10.3390/plants13010020
Setyawaty, R., Aptuning, R.B., & Dewanto, D. (2020). Preliminary Studies on the Content of Phytochemical Compounds On Skin of Salak Fruit (Salacca zalacca). Pharmaceutical Journal of Indonesia. 6(1), 1–6. https://doi.org/10.21776/ub.pji.2020.006.01.1
Sriyanti, C., Siregar, T.N., Mudatsir., & Gani, A. (2022). Preliminary Phytochemical Screening and Infra-Radiation Test of Crude the Leaves of Nothophanax scutellarium Merr., Moringa oleifera and Piper betle L. Research Journal of Pharmacy and Technology, 15(4). 1805-0. https://doi.org/ 10.52711/0974-360X.2022.00303
Li, L.H., Dutkiewicz, E.P., Huang Y.C., Zhou, H.B., & Hsu, C.C. (2019). Analytical methods for cholesterol quantification. Journal of Food and Drug Analysis, 27(2),375-386, https://doi.org/10.1016/j.jfda.2018.09.001.
Lestari, Y., Permatasari, S., & Oktasari, A. (2021). Antioxidant Activity Testing of Extract Kweni Peel (Mangifera odorata Griff). Indonesian Journal of Chemistry and Environment, 3(2), 11-20. https://doi.org/10.21831/ijce.v3i2.43508.
Syarifah, A.L., Retnowati, R., & Soebiantoro. (2019). Characterization of Secondary Metabolites Profile of Flavonoid from Salam Leaves (Eugenia polyantha) Using TLC and UV Spectrophotometry. Pharmaceutical Sciences and Research, 6(3), 4. https://doi.org?/0.7454/psr.v6i3.4219
Pardede, A., Manjang, Y., & Efdi, M. (2013). Skrining Fitokimia Ekstrak Metanol dari Kulit Batang Manggis (Garcinia cymosa). Media SainS, 6(2). 60-66.
Nakanishi, I., Shoji Y., Ohkubo, K., Fukuhara, K., Ozawa, T., Matsumoto, K., & Fukuzumi, S. (2021) Effects of reaction environments on radical-scavenging mechanisms of ascorbic acid, Journal of Clinical Biochemistry and Nutrition, 68(2), 116-122, https://doi.org/10.3164/jcbn.20-147
Carmona, Y., García-Moreno, M.v., José, I., & Carmelo, B.G. (2014). Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products. Food Chemistry. 165. 198–204. https://doi.org/10.1016/j.foodchem.2014.05.106
Downloads
Published
2025-11-04
Issue
Section
Articles
License
Copyright (c) 2025 Arif Ashari, Dwi Meilita, Ciptati, Rahmat Kurniawan, Irwan Sudarmanto, Ahmad Anggraria Jaya Agung, Moch Abdussalam

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Phytochemical Analysis and Antioxidant Activity of Acetone Extract from Moringa oleifera Leaves. (2025). Stannum : Jurnal Sains Dan Terapan Kimia, 7(2), 46-53. https://doi.org/10.33019/nqv16v61
